cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106349 Primes indexed by semiprimes.

Original entry on oeis.org

7, 13, 23, 29, 43, 47, 73, 79, 97, 101, 137, 139, 149, 163, 167, 199, 227, 233, 257, 269, 271, 293, 313, 347, 373, 389, 421, 439, 443, 449, 467, 487, 491, 499, 577, 607, 631, 647, 653, 661, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2005

Keywords

Comments

This is the sequence of the k-th prime for k = {4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,...}. Not to be confused with A106350: semiprimes indexed by primes.

Examples

			a(1) = 7 because semiprime(1) = 4, so prime(semiprime(1)) = prime(4) = 7.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Vincenzo Librandi, Nov 28 2015
    
  • Mathematica
    Prime@ Select[Range@ 161, PrimeOmega@ # == 2 &] (* or *) Select[Prime@ Range@ 161, PrimeOmega@ PrimePi@ # == 2 &] (* Michael De Vlieger, Nov 28 2015 *)
  • PARI
    lista(nn) = select(x->(bigomega(primepi(x))==2), primes(nn)); \\ Michel Marcus, Nov 29 2015

Formula

a(n) = prime(semiprime(n)).
a(n) = A000040(A001358(n)).
pi(a(n)) = p*q for some primes p and q.
Sum_{n>=1} 1/a(n) is in the interval (0.9910, 0.9915) (Kinlaw et al., 2024, Theorem 6, p. 11). - Amiram Eldar, Nov 09 2024