A339112
Products of primes of semiprime index (A106349).
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1
The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
1: 149: (34) 313: (36)
7: (11) 161: (11)(22) 329: (11)(23)
13: (12) 163: (18) 343: (11)(11)(11)
23: (22) 167: (26) 347: (29)
29: (13) 169: (12)(12) 373: (1C)
43: (14) 199: (19) 377: (12)(13)
47: (23) 203: (11)(13) 389: (45)
49: (11)(11) 227: (44) 421: (1D)
73: (24) 233: (27) 439: (37)
79: (15) 257: (35) 443: (1E)
91: (11)(12) 269: (28) 449: (2A)
97: (33) 271: (1A) 467: (46)
101: (16) 293: (1B) 487: (2B)
137: (25) 299: (12)(22) 491: (1F)
139: (17) 301: (11)(14) 499: (38)
These primes (of semiprime index) are listed by
A106349.
The strict (squarefree) case is
A340020.
The prime instead of semiprime version:
The nonprime instead of semiprime version:
The squarefree semiprime instead of semiprime version:
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of
A338916).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
N:= 1000: # for terms up to N
SP:= {}: p:= 1:
for i from 1 do
p:= nextprime(p);
if 2*p > N then break fi;
Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
SP:= SP union Q;
od:
SP:= sort(convert(SP,list)):
PSP:= map(ithprime,SP):
R:= {1}:
for p in PSP do
Rp:= {}:
for k from 1 while p^k <= N do
Rpk:= select(`<=`,R, N/p^k);
Rp:= Rp union map(`*`,Rpk, p^k);
od;
R:= R union Rp;
od:
sort(convert(R,list)); # Robert Israel, Nov 03 2024
-
semiQ[n_]:=PrimeOmega[n]==2;
Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]
A339113
Products of primes of squarefree semiprime index (A322551).
Original entry on oeis.org
1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1
The sequence of terms together with the corresponding multigraphs begins:
1: {} 233: {{2,7}} 487: {{2,11}}
13: {{1,2}} 257: {{3,5}} 491: {{1,15}}
29: {{1,3}} 269: {{2,8}} 499: {{3,8}}
43: {{1,4}} 271: {{1,10}} 559: {{1,2},{1,4}}
47: {{2,3}} 293: {{1,11}} 577: {{1,16}}
73: {{2,4}} 313: {{3,6}} 607: {{2,12}}
79: {{1,5}} 347: {{2,9}} 611: {{1,2},{2,3}}
101: {{1,6}} 373: {{1,12}} 631: {{3,9}}
137: {{2,5}} 377: {{1,2},{1,3}} 647: {{1,17}}
139: {{1,7}} 389: {{4,5}} 653: {{4,7}}
149: {{3,4}} 421: {{1,13}} 673: {{1,18}}
163: {{1,8}} 439: {{3,7}} 677: {{2,13}}
167: {{2,6}} 443: {{1,14}} 727: {{2,14}}
169: {{1,2},{1,2}} 449: {{2,10}} 751: {{4,8}}
199: {{1,9}} 467: {{4,6}} 757: {{1,19}}
These primes (of squarefree semiprime index) are listed by
A322551.
The strict (squarefree) case is
A309356.
The prime instead of squarefree semiprime version:
The nonprime instead of squarefree semiprime version:
The semiprime instead of squarefree semiprime version:
A002100 counts partitions into squarefree semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A339561 lists products of distinct squarefree semiprimes (ranking:
A339560).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]
A106350
Semiprimes indexed by primes.
Original entry on oeis.org
6, 9, 14, 21, 33, 35, 49, 55, 65, 86, 91, 115, 122, 129, 142, 159, 183, 187, 206, 215, 218, 247, 259, 287, 303, 319, 323, 334, 339, 358, 403, 415, 446, 451, 482, 489, 511, 527, 537, 553, 573, 581, 626, 633, 655, 667, 698, 737, 753, 758, 771, 791, 794, 835, 851
Offset: 1
a(1) = semiprime(prime(1)) = semiprime(2) = 6.
a(2) = semiprime(prime(2)) = semiprime(3) = 9.
-
A001358 := proc(n) if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a ; end if; end do ; end if ; end proc: A106350 := proc(n) A001358(ithprime(n)) ; end proc: seq(A106350(n),n=1..80) ; # R. J. Mathar, Dec 14 2009
-
terms = 55;
semiPrimes = Select[Range[16 terms], PrimeOmega[#] == 2&];
(* NB If the index Prime[terms] exceeds the size of the table semiPrimes, then the coefficient 16 has to be increased according to the number of terms desired: for instance, for 1000 terms, replace 16 with 32. *)
a[n_] := semiPrimes[[Prime[n]]];
Array[a, terms] (* Jean-François Alcover, Apr 13 2020 *)
All values after a(32) corrected by
R. J. Mathar, Dec 14 2009
A318400
Numbers whose prime indices are all powers of 2 (including 1).
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 19, 21, 24, 27, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 81, 84, 96, 98, 106, 108, 112, 114, 126, 128, 131, 133, 144, 147, 152, 159, 162, 168, 171, 189, 192, 196, 212, 216, 224, 228, 243, 252, 256, 262
Offset: 1
The sequence of all integer partitions whose parts are all powers of 2 (including 1) begins: (), (1), (2), (11), (21), (4), (111), (22), (211), (41), (1111), (221), (8), (42), (2111), (222), (411), (11111), (2211), (81), (421), (21111), (44).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pow2Q[n_]:=Or[n==1,MatchQ[FactorInteger[n],{{2,_}}]];
Select[Range[100],And@@pow2Q/@primeMS[#]&]
A322551
Primes indexed by squarefree semiprimes.
Original entry on oeis.org
13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 199, 233, 257, 269, 271, 293, 313, 347, 373, 389, 421, 439, 443, 449, 467, 487, 491, 499, 577, 607, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947, 983, 1051, 1061, 1093
Offset: 1
The sequence of edges whose MM-numbers belong to the sequence begins: {{1,2}}, {{1,3}}, {{1,4}}, {{2,3}}, {{2,4}}, {{1,5}}, {{1,6}}, {{2,5}}, {{1,7}}, {{3,4}}, {{1,8}}, {{2,6}}, {{1,9}}, {{2,7}}, {{3,5}}, {{2,8}}.
Cf.
A001358,
A003963,
A006881,
A056239,
A085156,
A106349,
A112798,
A302242,
A302491,
A320458,
A320459,
A320461.
-
Select[Range[100],PrimeOmega[#]==1&&PrimeOmega[PrimePi[#]]==2&&SquareFreeQ[PrimePi[#]]&]
-
isok(p) = isprime(p) && (ip=primepi(p)) && (omega(ip)==2) && (bigomega(ip) == 2); \\ Michel Marcus, Dec 16 2018
A340019
MM-numbers of labeled graphs with half-loops, without isolated vertices.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 55: {{2},{3}} 137: {{2,5}}
3: {{1}} 59: {{7}} 139: {{1,7}}
5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}}
11: {{3}} 67: {{8}} 143: {{3},{1,2}}
13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}}
15: {{1},{2}} 79: {{1,5}} 149: {{3,4}}
17: {{4}} 83: {{9}} 155: {{2},{5}}
29: {{1,3}} 85: {{2},{4}} 157: {{12}}
31: {{5}} 87: {{1},{1,3}} 163: {{1,8}}
33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}}
39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}}
41: {{6}} 109: {{10}} 177: {{1},{7}}
43: {{1,4}} 123: {{1},{6}} 179: {{13}}
47: {{2,3}} 127: {{11}} 187: {{3},{4}}
51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
The version with full loops covering an initial interval is
A320461.
The case covering an initial interval is
A340018.
The version with full loops is
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A122824
Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040,A001358] at n.
Original entry on oeis.org
1, 4, 9, 8, 10, 12, 24, 24, 32, 15, 46, 24, 27, 34, 25, 40, 44, 46, 51, 54, 53, 46, 54, 60, 70, 70, 98, 105, 104, 91, 64, 72, 45, 48, 95, 118, 120, 120, 116, 108, 100, 96, 101, 118, 102, 144, 123, 86, 76, 81, 136, 138, 143, 112, 132, 131, 153, 160, 171, 169
Offset: 1
a(1) = prime(semiprime(1)) - semiprime(prime(1)) = prime(4) - semiprime(2) = 7 - 6 = 1.
a(2) = prime(semiprime(2)) - semiprime(prime(2)) = prime(6) - semiprime(3) = 13 - 9 = 4.
a(3) = prime(semiprime(3)) - semiprime(prime(3)) = prime(9) - semiprime(5) = 23 - 14 = 9.
a(4) = prime(semiprime(4)) - semiprime(prime(4)) = prime(10) - semiprime(7) = 29 - 21 = 8.
-
sp = Select[Range[1000], PrimeOmega[#] == 2 &]; Table[ Prime[ sp[[i]]] - sp[[Prime[i]]], {i, PrimePi@ Length@ sp}] (* Giovanni Resta, Jun 13 2016 *)
a(33)-a(54) corrected by and a(55)-a(60) from
Giovanni Resta, Jun 13 2016
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A124268
Primes indexed by 3-almost primes.
Original entry on oeis.org
19, 37, 61, 71, 103, 107, 113, 181, 193, 197, 229, 239, 307, 317, 337, 349, 379, 383, 397, 479, 521, 523, 557, 571, 601, 619, 641, 643, 683, 691, 733, 787, 853, 857, 883, 887, 971, 977, 1013, 1019, 1021, 1033, 1039, 1091, 1109, 1123, 1151, 1187, 1279
Offset: 1
a(1) = prime(3almostprime(1)) = prime(8) = 19.
a(2) = prime(3almostprime(2)) = prime(12) = 37.
a(3) = prime(3almostprime(3)) = prime(18) = 61.
A124269
3-almost primes indexed by primes.
Original entry on oeis.org
12, 18, 27, 30, 50, 63, 75, 78, 102, 124, 130, 164, 172, 175, 190, 231, 246, 258, 279, 286, 292, 332, 345, 369, 404, 418, 425, 430, 435, 452, 524, 539, 574, 578, 606, 610, 638, 652, 663, 692, 722, 725, 775, 782, 795, 801, 854, 906, 916, 927, 938, 963, 969
Offset: 1
a(1) = 3almostprime(prime(1)) = 3almostprime(2) = 12 = 2^2 * 3.
a(2) = 3almostprime(prime(2)) = 3almostprime(3) = 18 = 2 * 3^2.
a(3) = 3almostprime(prime(3)) = 3almostprime(5) = 27 = 3^3.
-
From R. J. Mathar, Oct 15 2010: (Start)
A014612 := proc(n) option remember; if n = 1 then 8; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 3 then return a; end if; end do; end if; end proc:
A124269 := proc(n) A014612(ithprime(n)) ; end proc: seq(A124269(n),n=1..80) ; (End)
-
p3 = Select[Range[1000], PrimeOmega[#] == 3 &]; p3[[Prime@ Range@ PrimePi@ Length@ p3]] (* Giovanni Resta, Jun 13 2016 *)
Showing 1-10 of 28 results.
Comments