A106435 a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=3.
0, 3, 9, 36, 135, 513, 1944, 7371, 27945, 105948, 401679, 1522881, 5773680, 21889683, 82990089, 314639316, 1192888215, 4522582593, 17146412424, 65006985051, 246460192425, 934401532428, 3542585174559, 13430960120961
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,3).
Crossrefs
Programs
-
Haskell
a106435 n = a106435_list !! n a106435_list = 0 : 3 : map (* 3) (zipWith (+) a106435_list (tail a106435_list)) -- Reinhard Zumkeller, Oct 15 2011
-
Magma
a:=[0,3]; [n le 2 select a[n] else 3*Self(n-1) + 3*Self(n-2) : n in [1..24]]; // Marius A. Burtea, Jan 21 2020
-
Magma
R
:=PowerSeriesRing(Rationals(), 25); Coefficients(R!(3*x/(1-3*x-3*x^2))); // Marius A. Burtea, Jan 21 2020 -
Maple
seq(coeff(series(3*x/(1-3*x-3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Mar 12 2020
-
Mathematica
LinearRecurrence[{3,3}, {0,3}, 30] (* G. C. Greubel, Mar 12 2020 *)
-
PARI
a(n)=([0,3;1,3]^n)[1,2]
-
Sage
[3^((n+1)/2)*i^(1-n)*chebyshev_U(n-1, i*sqrt(3)/2) for n in (0..30)] # G. C. Greubel, Mar 12 2020
Formula
G.f.: 3*x/(1-3*x-3*x^2). - Philippe Deléham, Nov 19 2008
From G. C. Greubel, Mar 12 2020: (Start)
a(n) = 3^((n+1)/2) * Fibonacci(n, sqrt(3)), where F(n, x) is the Fibonacci polynomial.
a(n) = 3^((n+1)/2)*i^(1-n)*ChebyshevU(n-1, i*sqrt(3)/2). (End)
Extensions
Edited by N. J. A. Sloane, May 20 2006 and May 29 2006
Offset corrected by Reinhard Zumkeller, Oct 15 2011
Comments