cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106519 a(n) = (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*binomial(2*n/d, n/d).

Original entry on oeis.org

1, 1, 1, 2, 3, 9, 19, 58, 160, 499, 1527, 4940, 16001, 53187, 178305, 606330, 2079863, 7203864, 25138879, 88367780, 312577245, 1112119079, 3977502767, 14294207172, 51596165898, 186998138529, 680272336906, 2483341820512, 9094756956909
Offset: 1

Views

Author

F. Chapoton, May 30 2005

Keywords

Comments

A simple formula with no known combinatorial interpretation. This should give the multiplicity of the trivial module in some sequence of modules of dimension (2*n-2)!/n! over the symmetric groups S_n induced from modules of dimension (2*n-2)!/n!(n-1)! over the cyclic groups C_n.

Crossrefs

Programs

  • Magma
    A106519:= func< n | 2*Catalan(n-1) - (1/(2*n))*(&+[Round(Gamma(2*n/d +1)/Gamma(n/d +1)^2)*MoebiusMu(d): d in Divisors(n)]) >;
    [A106519(n): n in [1..30]]; // G. C. Greubel, Aug 06 2021
  • Maple
    a:= n -> (2/n)*( binomial(2*n-2, n-1) - (1/4)*add(NumberTheory[Moebius](d)*binomial(2*n/d, n/d), d = Divisors(n)) );
    seq(a(n), n = 1..30); # modified by G. C. Greubel, Aug 06 2021
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, 2*Binomial[2n-2, n-1]/n - Plus @@ (MoebiusMu[d]*Binomial[2*n/d, n/d])/(2n)]; Table[f[n], {n, 29}] (* Robert G. Wilson v, May 31 2005 *)
  • PARI
    a(n) = (2*binomial(2*n-2, n-1) - sumdiv(n, d, moebius(d)*binomial(2*n/d, n/d))/2)/n; \\ Michel Marcus, Aug 06 2021
    
  • Sage
    def a(n):
        return binomial(2*n-2,n-1)*2//n - sum(moebius(n//d)*binomial(2*d,d) for d in divisors(n))//(2*n) # F. Chapoton, May 31 2020
    

Formula

a(n) = (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*binomial(2*n/d, n/d).
a(n) = 2*A000108(n-1) - (1/(2*n))*Sum_{d|n} Moebius(d)*(n/d + 1)*A000108(n/d). - G. C. Greubel, Aug 06 2021
a(prime(n)) = A098796(n). - Peter Bala, Aug 20 2025

Extensions

More terms from Robert G. Wilson v, May 31 2005
a(1) = 1 prepended by G. C. Greubel, Aug 06 2021