A106564 Perfect squares which are not the difference of two primes.
25, 49, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 10201, 10609, 11449, 11881
Offset: 1
Examples
a(2)=49 because it is the second perfect square which is impossible to obtain subtracting a prime from another one. 64 is not in the sequence because 64=67-3 (difference of two primes).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n^2: n in [1..150]| not IsPrime(n^2+2) and n mod 2 eq 1]; // Vincenzo Librandi, Feb 28 2016
-
Maple
remove(t -> isprime(t+2), [seq(i^2, i=1..1000, 2)]); # Robert Israel, Feb 28 2016
-
Mathematica
With[{lst=Union[(#[[2]]-#[[1]])&/@Subsets[Prime[Range[2000]], {2}]]}, Select[Range[140]^2, !MemberQ[lst,#]&]] (* Harvey P. Dale, Jan 04 2011 *) Select[Range[1,174,2]^2, !PrimeQ[#+2]&] Select[Select[Range[30000], OddQ[#]&& !PrimeQ[#]&& !PrimeQ[#+2]&], IntegerQ[Sqrt[#]]&] (* Waldemar Puszkarz, Feb 27 2016 *)
-
PARI
for(n=1, 174, n%2==1&&!isprime(n^2+2)&&print1(n^2, ", ")) \\ Waldemar Puszkarz, Feb 27 2016
Formula
n^2 - A106546 with 0's removed.
Extensions
Extended by Ray Chandler, May 12 2005
Comments