A106597 Triangle T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{i >= 1} T(n-2*i, k-i), with T(n, 0) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 27, 27, 9, 1, 1, 11, 44, 72, 44, 11, 1, 1, 13, 65, 149, 149, 65, 13, 1, 1, 15, 90, 266, 388, 266, 90, 15, 1, 1, 17, 119, 431, 836, 836, 431, 119, 17, 1, 1, 19, 152, 652, 1585, 2150, 1585, 652, 152, 19, 1, 1, 21, 189, 937, 2743, 4753, 4753, 2743, 937, 189, 21, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 5, 5, 1; 1, 7, 14, 7, 1; 1, 9, 27, 27, 9, 1; 1, 11, 44, 72, 44, 11, 1; 1, 13, 65, 149, 149, 65, 13, 1; 1, 15, 90, 266, 388, 266, 90, 15, 1; 1, 17, 119, 431, 836, 836, 431, 119, 17, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
CoefficientList[#, y]& /@ CoefficientList[(1 -x^2*y)/(1 -x -x*y -2x^2*y +x^3*y + x^3*y^2) + O[x]^12, x]//Flatten (* Jean-François Alcover, Oct 30 2018, after Emanuele Munarini *)
-
PARI
/* same as in A092566, but last line (output) replaced by the following */ /* show as triangle T(n-k,k): */ { for(n=0,N-1, for(k=0,n, print1(T(n-k,k),", "); ); print(); ); } /* Joerg Arndt, Jul 01 2011 */
-
Sage
@CachedFunction def T(n, k): if (k<0): return 0 elif (k==0 or k==n): return 1 else: return + T(n-1, k-1) + T(n-1, k) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 08 2021
Formula
G.f.: (1-x^2*y)/(1-x-x*y-2*x^2*y+x^3*y+x^3*y^2). - Emanuele Munarini, Feb 01 2017
Extensions
More terms from Joshua Zucker, May 10 2006
Definition corrected by Emilie Hogan, Oct 15 2009
Comments