cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106708 a(n) is the concatenation of its nontrivial divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 23, 0, 24, 3, 25, 0, 2346, 0, 27, 35, 248, 0, 2369, 0, 24510, 37, 211, 0, 2346812, 5, 213, 39, 24714, 0, 23561015, 0, 24816, 311, 217, 57, 234691218, 0, 219, 313, 24581020, 0, 23671421, 0, 241122, 35915, 223, 0, 23468121624, 7, 251025, 317
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2007

Keywords

Crossrefs

Cf. A037278, A120712, A037279, A131983 (records), A131984 (where records occur).

Programs

  • Haskell
    a106708 1           = 0
    a106708 n
       | a010051 n == 1 = 0
       | otherwise = read $ concat $ (map show) $ init $ tail $ a027750_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A106708 := proc(n) local dvs ; if isprime(n) or n = 1 then 0; else dvs := [op(numtheory[divisors](n) minus {1,n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A106708(n),n=1..80) ; # R. J. Mathar, Aug 01 2007
  • Mathematica
    Table[If[CompositeQ[n],FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[ n]]]]],0],{n,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))}
    for(n=1,51,print1(map(n),",")) /* Klaus Brockhaus, Aug 05 2007 */
    
  • Python
    from sympy import divisors
    def a(n):
      nontrivial_divisors = [d for d in divisors(n)[1:-1]]
      if len(nontrivial_divisors) == 0: return 0
      else: return int("".join(str(d) for d in nontrivial_divisors))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Formula

a(n) = A037279(n) * A010051(n). - R. J. Mathar, Aug 01 2007

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Aug 01 2007
Name edited by Michael S. Branicky, Dec 31 2020