cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A131984 Where records occur in A106708.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 84, 90, 120, 168, 180, 240, 336, 360, 420, 480, 540, 600, 660, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 4200, 4620, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 25200, 27720
Offset: 1

Views

Author

Klaus Brockhaus, Aug 05 2007

Keywords

Comments

Numbers n such that concatenation of proper divisors of n exceeds that of all smaller numbers. Empty concatenation is regarded as 0.
Sequence has many terms in common with A034090 (numbers n such that sum of proper divisors of n exceeds that of all smaller numbers), A034287 (numbers n such that product of divisors of n is larger than for any number less than n), A034288 (product of proper divisors is larger than for any smaller number), A067128 (Ramanujan's largely composite numbers, defined to be n such that d(n) >= d(k) for k = 1 to n-1).

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[{n,If[CompositeQ[n],FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[n]]]]],0]},{n,30000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Apr 27 2024 *)
  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))} {m=28000; r=-1; for(n=1, m, if(r<(a=map(n)), r=a; print1(n, ",")))}

A131983 Records in A106708.

Original entry on oeis.org

0, 2, 23, 24, 25, 2346, 2369, 24510, 2346812, 23561015, 234691218, 23468121624, 234561012152030, 234671214212842, 235691015183045, 2345681012152024304060, 2346781214212428425684, 23456910121518203036456090
Offset: 1

Views

Author

Klaus Brockhaus, Aug 05 2007

Keywords

Crossrefs

Cf. A106708, A131984 (where records occur).

Programs

  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))} {m=200; r=-1; for(n=1, m, if(r<(a=map(n)), r=a; print1(r, ",")))}

A037278 Replace n with concatenation of its divisors.

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 12510, 111, 1234612, 113, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 13721, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 131, 12481632, 131133, 121734, 15735, 123469121836, 137
Offset: 1

Views

Author

Keywords

Comments

a(n) is the union of A176555(n) for n >= 1 and A176556(n) for n >= 2. See A176553 (numbers m such that concatenations of divisors of m are noncomposites) and A176554 (numbers m such that concatenations of divisors of m are nonprimes). [Jaroslav Krizek, Apr 21 2010]
a(n) is the concatenation of n-th row of the triangle in A027750.

Crossrefs

Programs

  • Haskell
    a037278 = read . concatMap show . a027750_row :: Integer -> Integer
    -- Reinhard Zumkeller, Jul 13 2013, May 01 2012, Aug 07 2011
    
  • MATLAB
    m=1;
    for u=1:34 div=divisors(u); conc=str2num(strrep(num2str(div), ' ', ''));
       sol(m)=conc; m=m+1;
    end
    sol % Marius A. Burtea, Jun 01 2019
    
  • Magma
    k:=1; sol:=[];
    for u in [1..34] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];end for;
         sol[u]:=conc; k:=k+1;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
    
  • Mathematica
    a[n_] := ToExpression[ StringJoin[ ToString /@ Divisors[n] ] ]; Table[ a[n], {n, 1, 34}] (* Jean-François Alcover, Dec 01 2011 *)
    FromDigits[Flatten[IntegerDigits/@Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    a(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ Michel Marcus, Jun 01 2019 and Sep 22 2022
    
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n)))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 31 2020

Formula

A134681(n) = A055642(a(n)). - Reinhard Zumkeller, Nov 06 2007

Extensions

More terms from Erich Friedman

A037279 If n is composite, replace n with the concatenation of its nontrivial divisors, otherwise a(n) = n.

Original entry on oeis.org

1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 11, 2346, 13, 27, 35, 248, 17, 2369, 19, 24510, 37, 211, 23, 2346812, 5, 213, 39, 24714, 29, 23561015, 31, 24816, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12 are 1,2,3,4,6,12, so a(12)=2346.
		

Crossrefs

Programs

  • Maple
    A037279 := proc(n) local dvs ; if isprime(n) or n = 1 then n; else dvs := [op(numtheory[divisors](n) minus {1,n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A037279(n),n=1..80) ; # R. J. Mathar, Jul 23 2007
  • Mathematica
    f[n_]:=If[PrimeQ[n],n,FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[n]]]]]]; Join[{1},Array[f,50,2]] (* Harvey P. Dale, Sep 24 2012 *)

Extensions

More terms from Erich Friedman
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A120712 Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.

Original entry on oeis.org

4, 6, 9, 21, 22, 25, 33, 39, 46, 49, 51, 54, 58, 78, 82, 93, 99, 111, 115, 121, 133, 141, 142, 147, 153, 154, 159, 162, 166, 169, 174, 177, 186, 187, 189, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 286, 289, 291, 294, 301, 318
Offset: 1

Views

Author

Eric Angelini, Jul 19 2007

Keywords

Examples

			   k |    divisors    | concatenation
  ---+----------------+--------------
   4 | (1) 2      (4) |        2
   6 | (1) 2, 3   (6) |       23
   9 | (1) 3      (9) |        3
  21 | (1) 3, 7  (21) |       37
  22 | (1) 2, 11 (22) |      211
  25 | (1) 5     (25) |        5
  33 | (1) 3, 11 (33) |      311
  39 | (1) 3, 13 (39) |      313
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for k from 2 to 1000 do:
    v0:=divisors(k):
    nn:=nops(v0):
    if nn > 2 then
    v1:=[seq(v0[j],j=2..nn-1)]:
    v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))):
    v3:=parse(v2):
    if isprime(v3) = true then lprint(k,v3) fi:
    fi:
    od: # Simon Plouffe
  • Mathematica
    fQ[n_] := PrimeQ@ FromDigits@ Most@ Rest@ Divisors@ n; Select[ Range[2, 320], fQ]
  • Python
    from sympy import divisors, isprime
    def ok(n):
        s = "".join(str(d) for d in divisors(n)[1:-1])
        return s != "" and isprime(int(s))
    print([k for k in range(319) if ok(k)]) # Michael S. Branicky, Oct 01 2024

Extensions

Name edited by Michel Marcus, Mar 09 2023

A037285 Replace n with concatenation of its nontrivial odd divisors.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 3, 5, 0, 3, 0, 7, 35, 0, 0, 39, 0, 5, 37, 11, 0, 3, 5, 13, 39, 7, 0, 3515, 0, 0, 311, 17, 57, 39, 0, 19, 313, 5, 0, 3721, 0, 11, 35915, 23, 0, 3, 7, 525, 317, 13, 0, 3927, 511, 7, 319, 29, 0, 3515, 0, 31, 37921, 0, 513, 31133, 0, 17, 323, 5735, 0, 39, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a037285 n
    | a209229 n == 1 = 0
    | a010051 n == 1 = 0
    | otherwise = read $ concat $ (map show) $ delete n $ tail $ a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Python
    from sympy import divisors
    def a(n):
      nontrivial_odd_divisors = [d for d in divisors(n)[1:-1] if d%2 == 1]
      if len(nontrivial_odd_divisors) == 0: return 0
      else: return int("".join(str(d) for d in nontrivial_odd_divisors))
    print([a(n) for n in range(1, 70)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A037277 Replace n with concatenation of its divisors >1.

Original entry on oeis.org

0, 2, 3, 24, 5, 236, 7, 248, 39, 2510, 11, 234612, 13, 2714, 3515, 24816, 17, 236918, 19, 2451020, 3721, 21122, 23, 234681224, 525, 21326, 3927, 2471428, 29, 2356101530, 31, 2481632, 31133, 21734, 5735, 23469121836, 37, 21938, 31339
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037277 1 = 0
    a037277 n = read $ concat $ map show $ tail $ a027750_row n
    -- Reinhard Zumkeller, May 01 2012, Feb 07 2011
    
  • Mathematica
    FromDigits[Flatten[IntegerDigits/@Rest[Divisors[#]]]]&/@Range[40] (* Harvey P. Dale, Nov 06 2011 *)
  • Python
    from sympy import divisors
    def a(n):
      divisors_gt1 = divisors(n)[1:]
      if len(divisors_gt1) == 0: return 0
      else: return int("".join(str(d) for d in divisors_gt1))
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A130846 Replace n with the concatenation of its anti-divisors.

Original entry on oeis.org

2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813, 2614, 345915, 235915, 716, 2371017, 3417, 2561118, 3581119, 2319, 41220, 237921, 35791321, 2561322, 3423, 23101423, 824, 2351525, 3457111525, 2671126, 391627
Offset: 3

Views

Author

Jonathan Vos Post, Jul 20 2007, Jul 22 2007

Keywords

Comments

Number of anti-divisors concatenated to form a(n) is A066272(n). We may consider prime values of the concatenated anti-divisor sequence and we may iterate it, i.e. n, a(n), a(a(n)), a(a(a(n))) which leads to questions of trajectory, cycles, fixed points.
See A066272 for definition of anti-divisor.
Primes in this sequence are at n=3,4,5,10,14,16,40,46,100,145,149,... - R. J. Mathar, Jul 24 2007

Examples

			3: 2, so a(3) = 2.
4: 3, so a(4) = 3.
5: 2, 3, so a(5) = 23.
6: 4, so a(6) = 4.
7: 2, 3, 5, so a(7) = 235.
17: 2, 3, 5, 7, 11, so a(17) = 235711
		

Crossrefs

Programs

  • Maple
    antiDivs := proc(n) local resul,odd2n,r ; resul := {} ; for r in ( numtheory[divisors](2*n-1) union numtheory[divisors](2*n+1) ) do if n mod r <> 0 and r> 1 and r < n then resul := resul union {r} ; fi ; od ; odd2n := numtheory[divisors](2*n) ; for r in odd2n do if ( r mod 2 = 1) and r > 2 then resul := resul union {2*n/r} ; fi ; od ; RETURN(resul) ; end: A130846 := proc(n) cat(op(antiDivs(n))) ; end: seq(A130846(n),n=3..80) ; # R. J. Mathar, Jul 24 2007
  • Python
    from sympy.ntheory.factor_ import antidivisors
    def A130846(n): return int(''.join(str(s) for s in antidivisors(n))) # Chai Wah Wu, Dec 08 2021

Extensions

More terms from R. J. Mathar, Jul 24 2007

A191647 Numbers n with property that the concatenation of their anti-divisors is a prime.

Original entry on oeis.org

3, 4, 5, 10, 14, 16, 40, 46, 100, 145, 149, 251, 340, 373, 406, 424, 439, 466, 539, 556, 571, 575, 617, 619, 628, 629, 655, 676, 689, 724, 760, 779, 794, 899, 901, 941, 970, 989, 1019, 1055, 1070, 1076, 1183, 1213, 1226, 1231, 1258, 1270, 1285, 1331, 1340
Offset: 1

Views

Author

Paolo P. Lava, Jun 10 2011

Keywords

Comments

Similar to A120712 which uses the proper divisors of n.

Examples

			The anti-divisors of 40 are 3, 9, 16, 27, and 391627 is prime, hence 40 is in the sequence.
		

Crossrefs

Programs

  • Maple
    P:=proc(i) local a,b,c,d,k,n,s,v; v:=array(1..200000);
    for n from 3 by 1 to i do k:=2; b:=0;
    while k0 and (2*n mod k)=0 then b:=b+1; v[b]:=k; fi;
         else
         if (n mod k)>0 and (((2*n-1) mod k)=0 or ((2*n+1) mod k)=0) then
    b:=b+1; v[b]:=k; fi; fi; k:=k+1; od; a:=v[1];
    for s from 2 to b do a:=a*10^floor(1+evalf(log10(v[s])))+v[s]; od;
    if isprime(a) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    antiDivisors[n_Integer] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; a191647[n_Integer] := Select[Range[n],
    PrimeQ[FromDigits[Flatten[IntegerDigits /@ antiDivisors[#]]]] &]; a191647[1350] (* Michael De Vlieger, Aug 09 2014, "antiDivisors" after Harvey P. Dale at A066272 *)
  • Python
    from sympy import isprime
    [n for n in range(3,10**4) if isprime(int(''.join([str(d) for d in range(2,n) if n%d and 2*n%d in [d-1,0,1]])))] # Chai Wah Wu, Aug 08 2014

Extensions

a(618) corrected in b-file by Paolo P. Lava, Feb 28 2018
Showing 1-9 of 9 results.