A037280 If n is composite replace n with the concatenation of its nontrivial divisors [ A037279 ] then divide out any factors of 2.
1, 1, 3, 1, 5, 23, 7, 3, 3, 25, 11, 1173, 13, 27, 35, 31, 17, 2369, 19, 12255, 37, 211, 23, 586703, 5, 213, 39, 12357, 29, 23561015, 31, 1551, 311, 217, 57, 117345609, 37, 219, 313, 6145255, 41, 23671421, 43, 120561, 35915, 223, 47, 2933515203, 7, 251025, 317
Offset: 1
Examples
Divisors of 12 are 1,2,3,4,6,12, so 12 -> 2346 = 2*1173 -> 1173 = a(12).
Crossrefs
Cf. A037279.
Programs
-
Maple
with(numtheory):ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1),j=1..nops(s))):end: a:=proc(n) options remember: local d,i,l,m: if n<3 then RETURN(1) else if not isprime(n) then d:=divisors(n): l:=nops(d): m:=ds([seq(op(convert(d[l-i+1],base,10)),i=2..l-1)]): RETURN(m/piecewise(m mod 2=1,1,2^(ifactors(m)[2][1][2]))) else RETURN(n) fi fi: end; seq(a(n),n=1..70); # C. Ronaldo
Extensions
More terms from Erich Friedman
Comments