cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182469 Triangle read by rows in which row n lists the odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 3, 5, 15, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 3, 7, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 7, 1, 29, 1, 3, 5, 15, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 7, 35, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 30 2012

Keywords

Comments

n-th row = intersection of A005408 and of n-th row of A027750.

Examples

			The triangle begins:
.  1   {1}
.  2   {1}
.  3   {1,3}
.  4   {1}
.  5   {1,5}
.  6   {1,3}
.  7   {1,7}
.  8   {1}
.  9   {1,3,9}
. 10   {1,5}
. 11   {1,11}
. 12   {1,3}
. 13   {1,13}
. 14   {1,7}
. 15   {1,3,5,15}
. 16   {1} .
		

Crossrefs

Cf. A001227 (row lengths), A000593 (row sums), A136655 (row products).
Cf. also A237048.

Programs

  • Haskell
    a182469 n k = a182469_tabf !! (n-1) !! (k-1)
    a182469_row = a027750_row . a000265
    a182469_tabf = map a182469_row [1..]
    
  • Mathematica
    Flatten[Table[Select[Divisors[n],OddQ],{n,40}]] (* Harvey P. Dale, Aug 13 2012 *)
    Flatten[Table[Divisors[n / 2^IntegerExponent[n, 2]], {n, 40}]] (* Amiram Eldar, May 02 2025 *)
  • PARI
    tabf(nn) = {for (n=1, nn, fordiv(n, d, if (d%2, print1(d, ", "))); print(););} \\ Michel Marcus, Apr 22 2017
    
  • PARI
    row(n) = divisors(n >> valuation(n, 2)); \\ Amiram Eldar, May 02 2025
    
  • Python
    from sympy import divisors
    def row(n):
        return [d for d in divisors(n) if d % 2]
    for n in range(1, 21): print(row(n)) # Indranil Ghosh, Apr 22 2017

Formula

T(n,k) = A027750(A000265(n),k), 1 <= k <= A001227(n).
A000265(n) = T(n,A001227(n)).

A106708 a(n) is the concatenation of its nontrivial divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 23, 0, 24, 3, 25, 0, 2346, 0, 27, 35, 248, 0, 2369, 0, 24510, 37, 211, 0, 2346812, 5, 213, 39, 24714, 0, 23561015, 0, 24816, 311, 217, 57, 234691218, 0, 219, 313, 24581020, 0, 23671421, 0, 241122, 35915, 223, 0, 23468121624, 7, 251025, 317
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2007

Keywords

Crossrefs

Cf. A037278, A120712, A037279, A131983 (records), A131984 (where records occur).

Programs

  • Haskell
    a106708 1           = 0
    a106708 n
       | a010051 n == 1 = 0
       | otherwise = read $ concat $ (map show) $ init $ tail $ a027750_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A106708 := proc(n) local dvs ; if isprime(n) or n = 1 then 0; else dvs := [op(numtheory[divisors](n) minus {1,n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A106708(n),n=1..80) ; # R. J. Mathar, Aug 01 2007
  • Mathematica
    Table[If[CompositeQ[n],FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[ n]]]]],0],{n,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))}
    for(n=1,51,print1(map(n),",")) /* Klaus Brockhaus, Aug 05 2007 */
    
  • Python
    from sympy import divisors
    def a(n):
      nontrivial_divisors = [d for d in divisors(n)[1:-1]]
      if len(nontrivial_divisors) == 0: return 0
      else: return int("".join(str(d) for d in nontrivial_divisors))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Formula

a(n) = A037279(n) * A010051(n). - R. J. Mathar, Aug 01 2007

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Aug 01 2007
Name edited by Michael S. Branicky, Dec 31 2020

A037283 Replace n with concatenation of its odd divisors.

Original entry on oeis.org

1, 1, 13, 1, 15, 13, 17, 1, 139, 15, 111, 13, 113, 17, 13515, 1, 117, 139, 119, 15, 13721, 111, 123, 13, 1525, 113, 13927, 17, 129, 13515, 131, 1, 131133, 117, 15735, 139, 137, 119, 131339, 15, 141, 13721, 143, 111, 13591545, 123, 147, 13, 1749, 1525, 131751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037283 = read . concat . (map show) . a182469_row :: Integer -> Integer
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    dtn[ L_ ] := Fold[ 10#1+#2&, 0, L ] Array[ dtn[ Flatten[ Map[ IntegerDigits, Select[ Divisors[ # ], OddQ ] ] ] ]&, 50 ]
    cod[n_]:=FromDigits[Flatten[IntegerDigits/@Select[Divisors[n],OddQ]]]; Array[cod,60] (* Harvey P. Dale, Jan 24 2014 *)
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n) if d%2==1))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A037284 Replace n with concatenation of its odd divisors >1.

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 39, 5, 11, 3, 13, 7, 3515, 0, 17, 39, 19, 5, 3721, 11, 23, 3, 525, 13, 3927, 7, 29, 3515, 31, 0, 31133, 17, 5735, 39, 37, 19, 31339, 5, 41, 3721, 43, 11, 3591545, 23, 47, 3, 749, 525, 31751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037284 n
       | a209229 n == 1 = 0
       | otherwise      = read $ concat $ (map show) $ tail $ a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    Array[FromDigits[Flatten[IntegerDigits/@Rest[Select[Divisors[#], OddQ]]]]&, 60] (* Harvey P. Dale, Mar 03 2014 *)
  • Python
    from sympy import divisors
    def a(n):
      odd_divisors_gt1 = [d for d in divisors(n)[1:] if d%2 == 1]
      if len(odd_divisors_gt1) == 0: return 0
      else: return int("".join(str(d) for d in odd_divisors_gt1))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Extensions

a(36) corrected by Reinhard Zumkeller, May 01 2012
Showing 1-4 of 4 results.