A000265
Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.
Original entry on oeis.org
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1
G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Peter Bala, A note on the sequence of numerators of a rational function
- V. Daiev and J. L. Brown, Problem H-81, Fib. Quart., 6 (1968), 52.
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Eric Weisstein's World of Mathematics, Odd Part
- Eric Weisstein's World of Mathematics, Trigonometry Angles
- Eric Weisstein's World of Mathematics, Sphere Line Picking
-
a000265 = until odd (`div` 2)
-- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
-
int A000265(n){
while(n%2==0) n>>=1;
return n;
}
/* Aidan Simmons, Feb 24 2019 */
-
using IntegerSequences
[OddPart(n) for n in 1:77] |> println # Peter Luschny, Sep 25 2021
-
A000265:= func< n | n/2^Valuation(n,2) >;
[A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
-
A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
-
a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
-
{a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
-
from _future_ import division
def A000265(n):
while not n % 2:
n //= 2
return n # Chai Wah Wu, Mar 25 2018
-
def a(n):
while not n&1: n >>= 1
return n
print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
-
def A000265(n): return n//2^valuation(n,2)
[A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
-
(define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
A001227
Number of odd divisors of n.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1
G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
Diagram
n a(n) _
1 1 _|1|
2 1 _|1 _|
3 2 _|1 |1|
4 1 _|1 _| |
5 2 _|1 |1 _|
6 2 _|1 _| |1|
7 2 _|1 |1 | |
8 1 _|1 _| _| |
9 3 _|1 |1 |1 _|
10 2 _|1 _| | |1|
11 2 _|1 |1 _| | |
12 2 |1 | |1 | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
- Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- K. S. Brown's Mathpages, Partitions into Consecutive Integers.
- Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 18.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- A. Heiligenbrunner, Sum of adjacent numbers (in German).
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 11.
- Gerzson Kéri, The factorization of compressed Chebyshev polynomials and other polynomials related to multiple-angle formulas, Annales Univ. Sci. Budapest (Hungary, 2022) Sect. Comp., Vol. 53, 93-108.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_o(n).
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976.
- N. J. A. Sloane, Transforms.
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6.
- Eric Weisstein's World of Mathematics, Binomial Number and Odd Divisor Function.
- Eric Weisstein's World of Mathematics, q-Polygamma Function.
- Index entries for "core" sequences.
- Index entries for sequences mentioned by Glaisher.
Cf.
A000005,
A000079,
A000593,
A010054 (char. func.),
A038547 (positions of first appearances),
A050999,
A051000,
A051001,
A051002,
A051731,
A054844,
A069283,
A069288,
A109814,
A115369,
A118235,
A118236,
A125911,
A136655,
A183063,
A183064,
A237593,
A247795,
A272887,
A273401,
A279387,
A286001.
-
a001227 = sum . a247795_row
-- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
-
[NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
-
for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
A001227 := proc(n) local a,d;
a := 1 ;
for d in ifactors(n)[2] do
if op(1,d) > 2 then
a := a*(op(2,d)+1) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Jun 18 2015
-
f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
a[ n_] := Sum[ Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
(* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
(* cl = current level, cs = current subparts count *)
a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
-
{a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
-
{a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
-
a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
-
a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
-
a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
-
from functools import reduce
from operator import mul
from sympy import factorint
def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
-
def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
[A001227(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
A000593
Sum of odd divisors of n.
Original entry on oeis.org
1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1
G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
- Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
- Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Francesca Aicardi, Matricial formulas for partitions, arXiv:0806.1273 [math.NT], 2008.
- Michael Baake and Robert V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999; Canad. J. Math. 51 (1999), 1258-1276.
- John A. Ewell, On the sum-of-divisors function, Fib. Q., 45 (2007), 205-207.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Heekyoung Hahn, Convolution sums of some functions on divisors, arXiv:1507.04426 [math.NT], 2015.
- Kaya Lakein and Anne Larsen, A Proof of Merca's Conjectures on Sums of Odd Divisor Functions, arXiv:2107.07637 [math.NT], 2021.
- Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017, also here
- Mircea Merca, Congruence identities involving sums of odd divisors function, Proceedings of the Romanian Academy, Series A, Volume 22, Number 2/2021, pp. 119-125.
- Hossein Movasati and Younes Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv:1603.09411 [math.AG], 2016.
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), Article 01.2.1.
- N. J. A. Sloane, Transforms.
- H. J. Stephen Smith, Report on the Theory of Numbers. — Part VI., Report of the 35 Meeting of the British Association for the Advancement of Science (1866). See p. 336.
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Eric Weisstein's World of Mathematics, Partition Function Q.
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
- Index entries for "core" sequences.
- Index entries for sequences mentioned by Glaisher.
Cf.
A000005,
A000203,
A000265,
A001227,
A006128,
A050999,
A051000,
A051001,
A051002,
A065442,
A078471 (partial sums),
A069289,
A247837 (subset of the primes).
-
a000593 = sum . a182469_row -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
-
[&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
-
A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
-
Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
-
N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j))) /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
-
s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
-
a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
-
from math import prod
from sympy import factorint
def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
-
[sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
A000016
a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0
For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
- B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
- J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)
- Seiichi Manyama, Table of n, a(n) for n = 0..3334 (first 201 terms from T. D. Noe)
- Nicolás Álvarez, Victória Becher, Martín Mereb, Ivo Pajor, and Carlos Miguel Soto, On extremal factors of de Bruijn-like graphs, Univ. Buenos Aires (Argentina 2023). See also arXiv:2308.16257 [math.CO], 2023. See references.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 17.
- A. E. Brouwer, The Enumeration of Locally Transitive Tournaments, Math. Centr. Report ZW138, Amsterdam, 1980.
- S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Sébastien Designolle, Tamás Vértesi, and Sebastian Pokutta, Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms, arXiv:2310.20677 [quant-ph], 2023.
- T. M. A. Fink, Exact dynamics of the critical Kauffman model with connectivity one, arXiv:2302.05314 [cond-mat.stat-mech], 2023.
- R. W. Hall and P. Klingsberg, Asymmetric rhythms and tiling canons, Amer. Math. Monthly, 113 (2006), 887-896.
- A. A. Kulkarni, N. Kiyavash and R. Sreenivas, On the Varshamov-Tenengolts Construction on Binary Strings, 2013.
- E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations, Pacific J. Math., 110 (1984), 203-221.
- R. Pries and C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, arXiv preprint arXiv:1302.6261 [math.NT], 2013.
- N. J. A. Sloane, On single-deletion-correcting codes
- N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs
- Yan Bo Ti, Gabriel Verret, and Lukas Zobernig, Abelian Varieties with p-rank Zero, arXiv:2203.08401 [math.NT], 2022.
- Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, and Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra Appl. 530, 414-444 (2017).
- Index entries for sequences related to tournaments
- Index entries for sequences related to necklaces
- Index entries for sequences related to subset sums modulo m
The main diagonal of table
A068009, the left edge of triangle
A053633.
Subsets whose mean is an element are
A065795.
Partitions containing their mean are
A237984.
Subsets containing n but not their mean are
A327477.
-
a000016 0 = 1
a000016 n = (`div` (2 * n)) $ sum $
zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
where oddDivs = a182469_row n
-- Reinhard Zumkeller, May 01 2012
-
A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
-
a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
-
a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
-
from sympy import totient, divisors
def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023
A069288
Number of odd divisors of n <= sqrt(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1
From _Gus Wiseman_, Feb 11 2021: (Start)
The inferior odd divisors for selected n are the columns below:
n: 1 9 30 90 225 315 630 945 1575 2835 4410 3465 8190 6930
--------------------------------------------------------------------
1 3 5 9 15 15 21 27 35 45 63 55 65 77
1 3 5 9 9 15 21 25 35 49 45 63 63
1 3 5 7 9 15 21 27 45 35 45 55
1 3 5 7 9 15 21 35 33 39 45
1 3 5 7 9 15 21 21 35 35
1 3 5 7 9 15 15 21 33
1 3 5 7 9 11 15 21
1 3 5 7 9 13 15
1 3 5 7 9 11
1 3 5 7 9
1 3 5 7
1 3 5
1 3
1
(End)
Positions of first appearances are
A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.
A261699
Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists positive terms interleaved with k-1 zeros, starting in row k(k+1)/2. If k is odd the positive terms of column k are k's, otherwise if k is even the positive terms of column k are the odd numbers greater than k in increasing order.
Original entry on oeis.org
1, 1, 1, 3, 1, 0, 1, 5, 1, 0, 3, 1, 7, 0, 1, 0, 0, 1, 9, 3, 1, 0, 0, 5, 1, 11, 0, 0, 1, 0, 3, 0, 1, 13, 0, 0, 1, 0, 0, 7, 1, 15, 3, 0, 5, 1, 0, 0, 0, 0, 1, 17, 0, 0, 0, 1, 0, 3, 9, 0, 1, 19, 0, 0, 0, 1, 0, 0, 0, 5, 1, 21, 3, 0, 0, 7, 1, 0, 0, 11, 0, 0, 1, 23, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 25, 0, 0, 5, 0, 1, 0, 0, 13, 0, 0
Offset: 1
Triangle begins:
1;
1;
1, 3;
1, 0;
1, 5;
1, 0, 3;
1, 7, 0;
1, 0, 0;
1, 9, 3;
1, 0, 0, 5;
1, 11, 0, 0;
1, 0, 3, 0;
1, 13, 0, 0;
1, 0, 0, 7;
1, 15, 3, 0, 5;
1, 0, 0, 0, 0;
1, 17, 0, 0, 0;
1, 0, 3, 9, 0;
1, 19, 0, 0, 0;
1, 0, 0, 0, 5;
1, 21, 3, 0, 0, 7;
1, 0, 0, 11, 0, 0;
1, 23, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0;
1, 25, 0, 0, 5, 0;
1, 0, 0, 13, 0, 0;
1, 27, 3, 0, 0, 9;
1, 0, 0, 0, 0, 0, 7;
...
From _Omar E. Pol_, Dec 19 2016: (Start)
Illustration of initial terms in a right triangle whose structure is the same as the structure of A237591:
Row _
1 _|1|
2 _|1 _|
3 _|1 |3|
4 _|1 _|0|
5 _|1 |5 _|
6 _|1 _|0|3|
7 _|1 |7 |0|
8 _|1 _|0 _|0|
9 _|1 |9 |3 _|
10 _|1 _|0 |0|5|
11 _|1 |11 _|0|0|
12 _|1 _|0 |3 |0|
13 _|1 |13 |0 _|0|
14 _|1 _|0 _|0|7 _|
15 _|1 |15 |3 |0|5|
16 _|1 _|0 |0 |0|0|
17 _|1 |17 _|0 _|0|0|
18 _|1 _|0 |3 |9 |0|
19 _|1 |19 |0 |0 _|0|
20 _|1 _|0 _|0 |0|5 _|
21 _|1 |21 |3 _|0|0|7|
22 _|1 _|0 |0 |11 |0|0|
23 _|1 |23 _|0 |0 |0|0|
24 _|1 _|0 |3 |0 _|0|0|
25 _|1 |25 |0 _|0|5 |0|
26 _|1 _|0 _|0 |13 |0 _|0|
27 _|1 |27 |3 |0 |0|9 _|
28 |1 |0 |0 |0 |0|0|7|
... (End)
Cf.
A000217,
A000593,
A001227,
A003056,
A005408,
A027750,
A057427,
A182469,
A196020,
A211343,
A236104,
A235791,
A236112,
A237048,
A237591,
A237593,
A261350,
A261697,
A261698,
A285914,
A286013.
-
T[n_, k_?OddQ] /; n == k (k + 1)/2 := k; T[n_, k_?OddQ] /; Mod[n - k (k + 1)/2, k] == 0 := k; T[n_, k_?EvenQ] /; n == k (k + 1)/2 := k + 1; T[n_, k_?EvenQ] /; Mod[n - k (k + 1)/2, k] == 0 := T[n - k, k] + 2; T[, ] = 0; Table[T[n, k], {n, 1, 26}, {k, 1, Floor[(Sqrt[1 + 8 n] - 1)/2]}] // Flatten (* Jean-François Alcover, Sep 21 2015 *)
(* alternate definition using function a237048 *)
T[n_, k_] := If[a237048[n, k] == 1, If[OddQ[k], k, 2n/k], 0] (* Hartmut F. W. Hoft, Oct 25 2015 *)
A050999
Sum of squares of odd divisors of n.
Original entry on oeis.org
1, 1, 10, 1, 26, 10, 50, 1, 91, 26, 122, 10, 170, 50, 260, 1, 290, 91, 362, 26, 500, 122, 530, 10, 651, 170, 820, 50, 842, 260, 962, 1, 1220, 290, 1300, 91, 1370, 362, 1700, 26, 1682, 500, 1850, 122, 2366, 530, 2210, 10, 2451, 651, 2900, 170, 2810, 820, 3172, 50, 3620, 842, 3482
Offset: 1
x + x^2 + 10*x^3 + x^4 + 26*x^5 + 10*x^6 + 50*x^7 + x^8 + 91*x^9 + 26*x^10 + ...
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- R. J. Mathar, Survey of Dirichlet Series of Multiplicative Arithmetic Functions, arXiv:1106.4038 [math.NT], 2011, eq. (3.74).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher
Glaisher's Delta_i (i=0..12):
A001227,
A000593,
A050999,
A051000,
A051001,
A051002,
A321810,
A321811,
A321812,
A321813,
A321814,
A321815,
A321816
-
a050999 = sum . map (^ 2) . a182469_row
-- Reinhard Zumkeller, May 01 2012
-
a[n_] := 1/2*Sum[(1 - (-1)^d)*d^2, {d, Divisors[n]}]; Table[a[n], {n, 1, 59}] (* Jean-François Alcover, Oct 23 2012, from 2nd formula *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d^2, {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
f[p_, e_] := If[p == 2, 1, (p^(2*e + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
Table[Total[Select[Divisors[n],OddQ]^2],{n,80}] (* Harvey P. Dale, Jul 19 2024 *)
-
a(n)=sumdiv(n,d, if(d%2==1, d^2, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
-
from sympy import divisor_sigma
def A050999(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),2)) # Chai Wah Wu, Jul 16 2022
A051000
Sum of cubes of odd divisors of n.
Original entry on oeis.org
1, 1, 28, 1, 126, 28, 344, 1, 757, 126, 1332, 28, 2198, 344, 3528, 1, 4914, 757, 6860, 126, 9632, 1332, 12168, 28, 15751, 2198, 20440, 344, 24390, 3528, 29792, 1, 37296, 4914, 43344, 757, 50654, 6860, 61544, 126, 68922, 9632, 79508, 1332, 95382, 12168, 103824, 28
Offset: 1
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- John A. Ewell, On a relation between two divisor functions, JP Journal of Algebra, Number Theory and Applications, Vol. 7, No. 2 (2007), pp. 241-243.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
-
a051000 = sum . map (^ 3) . a182469_row
-- Reinhard Zumkeller, May 01 2012
-
Table[Total[Select[Divisors[n],OddQ]^3],{n,50}] (* Harvey P. Dale, Jun 28 2012 *)
f[2, e_] := 1; f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
-
a(n) = sumdiv(n, d, (d%2)*d^3); \\ Michel Marcus, Jan 04 2017
-
from sympy import divisor_sigma
def A051000(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),3)) # Chai Wah Wu, Jul 16 2022
A069283
a(n) = -1 + number of odd divisors of n.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 0, 3, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 1, 5, 1, 1, 1, 2, 2, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 1, 1, 5, 0, 3, 3, 1, 1, 3, 3, 1, 2, 1, 1, 5, 1, 3, 3, 1, 1, 4, 1, 1, 3, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 3, 1, 1, 2, 5, 2
Offset: 0
a(14) = 1 because the divisors of 14 are 1, 2, 7, 14, and of these, two are odd, 1 and 7, and -1 + 2 = 1.
a(15) = 3 because the divisors of 15 are 1, 3, 5, 15, and of these, all four are odd, and -1 + 4 = 3.
a(16) = 0 because 16 has only one odd divisor, and -1 + 1 = 0.
Using Ant King's formula: a(90) = 5 as 90 = 2^1 * 3^2 * 5^1, so a(90) = (1 + 2) * (1 + 1) - 1 = 5. - _Giovanni Ciriani_, Jan 12 2013
x^3 + x^5 + x^6 + x^7 + 2*x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + ...
a(120) = 3 as the odd divisors of 120 are the odd divisors of 15 as 120 = 15*2^3. 15 has 4 odd divisors so that gives a(120) = 4 - 1 = 3. - _David A. Corneth_, May 30 2020
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994, see exercise 2.30 on p. 65.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Tom M. Apostol, Sums of Consecutive Positive Integers, The Mathematical Gazette, Vol. 87, No. 508, (March 2003), pp. 98-101.
- Alfred Heiligenbrunner, Sum of adjacent numbers (in German).
- Henri Picciotto, Staircases.
- Wikipedia, Polite Number.
Cf.
A095808 (sums of ascending and descending consecutive integers).
-
a069283 0 = 0
a069283 n = length $ tail $ a182469_row n
-- Reinhard Zumkeller, May 01 2012
-
[0] cat [-1 + #[d:d in Divisors(n)| IsOdd(d)]:n in [1..100]]; // Marius A. Burtea, Aug 24 2019
-
g:=sum(x^(k*(k+1)/2)/(1-x^k),k=2..20): gser:=series(g,x=0,115): seq(coeff(gser,x,n),n=0..100); # Emeric Deutsch, Mar 04 2006
A069283 := proc(n)
A001227(n)-1 ;
end proc: # R. J. Mathar, Jun 18 2015
-
g[n_] := Module[{dL = Divisors[2n], dP}, dP = Transpose[{dL, 2n/dL}]; Select[dP, ((1 < #[[1]] < #[[2]]) && (Mod[ #[[1]] - #[[2]], 2] == 1)) &] ]; Table[Length[g[n]], {n, 1, 100}]
Table[Length[Select[Divisors[k], OddQ[#] &]] - 1, {k, 100}] (* Ant King, Nov 20 2010 *)
Join[{0}, Times @@@ (#[[All, 2]] & /@ Replace[FactorInteger[Range[2, 50]], {2, a_} -> {2, 0}, Infinity] + 1) - 1] (* Horst H. Manninger, Oct 30 2021 *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, d%2) - 1)} /* Michael Somos, Aug 07 2013 */
-
a(n) = numdiv(n >> valuation(n, 2)) - 1 \\ David A. Corneth, May 30 2020
-
from sympy import divisor_count
def A069283(n): return divisor_count(n>>(~n&n-1).bit_length())-1 if n else 0 # Chai Wah Wu, Jul 16 2022
A379288
Irregular triangle read by rows in which row n lists the odd divisors of n excluding odd divisors e for which there exists another divisor j with j < e < 2*j.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 1, 13, 1, 7, 1, 3, 15, 1, 1, 17, 1, 1, 19, 1, 1, 3, 7, 21, 1, 11, 1, 23, 1, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 1, 29, 1, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 35, 1, 1, 37, 1, 19, 1, 3, 13, 39, 1, 1, 41, 1, 1, 43
Offset: 1
These are the odd terms of
A379374.
-
row[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Select[Join[{1}, Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]], OddQ]]; Table[row[n], {n, 1, 50}] // Flatten (* Amiram Eldar, Dec 22 2024 *)
Showing 1-10 of 29 results.
Comments