cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A001227 Number of odd divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000
This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 if and only if n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime if and only if a(n) = 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd if and only if n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
                              Diagram
   n   a(n)                         _
   1     1                        _|1|
   2     1                      _|1 _|
   3     2                    _|1  |1|
   4     1                  _|1   _| |
   5     2                _|1    |1 _|
   6     2              _|1     _| |1|
   7     2            _|1      |1  | |
   8     1          _|1       _|  _| |
   9     3        _|1        |1  |1 _|
  10     2      _|1         _|   | |1|
  11     2    _|1          |1   _| | |
  12     2   |1            |   |1  | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

Crossrefs

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.
Dirichlet inverse is A327276.

Programs

  • Haskell
    a001227 = sum . a247795_row
    -- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
    
  • Maple
    for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
    A001227 := proc(n) local a,d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1,d) > 2 then
                a := a*(op(2,d)+1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
    Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
    f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := Sum[  Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
    a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
    Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
    (* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
    (* cl = current level, cs = current subparts count *)
    a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
    a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
    
  • PARI
    a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
    
  • PARI
    a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
  • SageMath
    def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
    [A001227(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012
    

Formula

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020: (Start)
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, or d(n) - d(n/2) if n is even, where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
a(n) = Sum_{i=1..n} (-1)^(i+1)*A135539(n,i). - Ridouane Oudra, Apr 13 2023

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A000016 a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0

Views

Author

Keywords

Comments

Also a(n+1) = number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the sum of its contents. E.g., for n=5 there are 6 such sequences.
Also a(n+1) = number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 0 (mod n+1) = size of Varshamov-Tenengolts code VT_0(n). E.g., |VT_0(5)| = 6 = a(6).
Number of binary necklaces with an odd number of zeros. - Joerg Arndt, Oct 26 2015
Also, number of subsets of {1,2,...,n-1} which sum to 0 modulo n (cf. A063776). - Max Alekseyev, Mar 26 2016
From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} containing n whose mean is an element. For example, the a(1) = 1 through a(8) = 16 subsets are:
1 2 3 4 5 6 7 8
123 234 135 246 147 258
345 456 357 468
12345 1236 567 678
1456 2347 1348
23456 2567 1568
12467 3458
13457 3678
34567 12458
1234567 14578
23578
24568
45678
123468
135678
2345678
(End)
Number of self-dual binary necklaces with 2n beads (cf. A263768, A007147). - Bernd Mulansky, Apr 25 2023

Examples

			For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)

Crossrefs

The main diagonal of table A068009, the left edge of triangle A053633.
Subsets whose mean is an element are A065795.
Dominated by A082550.
Partitions containing their mean are A237984.
Subsets containing n but not their mean are A327477.

Programs

  • Haskell
    a000016 0 = 1
    a000016 n = (`div` (2 * n)) $ sum $
       zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
       where oddDivs = a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
  • Mathematica
    a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
  • PARI
    a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
    
  • Python
    from sympy import totient, divisors
    def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023

Formula

a(n) = Sum_{odd d divides n} (phi(d)*2^(n/d))/(2*n), n>0.
a(n) = A063776(n)/2.
a(n) = 2^(n-1) - A327477(n). - Gus Wiseman, Sep 14 2019

Extensions

More terms from Michael Somos, Dec 11 1999

A069288 Number of odd divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(n) = #{d : d = A182469(n,k), d <= A000196(n), k=1..A001227(n)}. - Reinhard Zumkeller, Apr 05 2015

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
The inferior odd divisors for selected n are the columns below:
n: 1    9   30   90  225  315  630  945 1575 2835 4410 3465 8190 6930
  --------------------------------------------------------------------
   1    3    5    9   15   15   21   27   35   45   63   55   65   77
        1    3    5    9    9   15   21   25   35   49   45   63   63
             1    3    5    7    9   15   21   27   45   35   45   55
                  1    3    5    7    9   15   21   35   33   39   45
                       1    3    5    7    9   15   21   21   35   35
                            1    3    5    7    9   15   15   21   33
                                 1    3    5    7    9   11   15   21
                                      1    3    5    7    9   13   15
                                           1    3    5    7    9   11
                                                1    3    5    7    9
                                                     1    3    5    7
                                                          1    3    5
                                                               1    3
                                                                    1
(End)
		

Crossrefs

Positions of first appearances are A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A000009 counts partitions into odd parts (A066208).
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A067659 counts strict partitions of odd length (A030059).
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A038548 counts inferior divisors.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.

Programs

Formula

G.f.: Sum_{n>=1} 1/(1-q^(2*n-1)) * q^((2*n-1)^2). [Joerg Arndt, Mar 04 2010]

A261699 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists positive terms interleaved with k-1 zeros, starting in row k(k+1)/2. If k is odd the positive terms of column k are k's, otherwise if k is even the positive terms of column k are the odd numbers greater than k in increasing order.

Original entry on oeis.org

1, 1, 1, 3, 1, 0, 1, 5, 1, 0, 3, 1, 7, 0, 1, 0, 0, 1, 9, 3, 1, 0, 0, 5, 1, 11, 0, 0, 1, 0, 3, 0, 1, 13, 0, 0, 1, 0, 0, 7, 1, 15, 3, 0, 5, 1, 0, 0, 0, 0, 1, 17, 0, 0, 0, 1, 0, 3, 9, 0, 1, 19, 0, 0, 0, 1, 0, 0, 0, 5, 1, 21, 3, 0, 0, 7, 1, 0, 0, 11, 0, 0, 1, 23, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 25, 0, 0, 5, 0, 1, 0, 0, 13, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Sep 20 2015

Keywords

Comments

Conjecture: the positive terms in row n are the odd divisors of n.
Note that the elements appear with an unusual ordering, for example; row 45 is 1, 45, 3, 0, 5, 15, 0, 0, 9.
The positive terms give A261697.
Row n has length A003056(n) hence column k starts in row A000217(k).
The number of positive terms in row n is A001227(n).
The sum of row n is A000593(n).
The connection with the symmetric representation of sigma is as follows: A237048 --> A235791 --> A237591 --> A237593.
Proof of the conjecture: let n = 2^m*s*t with s and t odd. The property stated in A237048 verifies the conjecture with odd divisor k <= A003056(n) of n in position k and odd divisor t > A003056(n) in position 2^(m+1)*s. Therefore reading in row n the nonzero odd positions from left to right and then the nonzero even positions from right to left gives all odd divisors of n in increasing order. - Hartmut F. W. Hoft, Oct 25 2015
A237048 gives the signum function (A057427) of this sequence. - Omar E. Pol, Nov 14 2016
From Peter Munn, Jul 30 2017: (Start)
Each odd divisor d of n corresponds to n written as a sum of consecutive integers (n/d - (d-1)/2) .. (n/d + (d-1)/2). After canceling any corresponding negative and positive terms and deleting any zero term, the lower bound becomes abs(n/d - d/2) + 1/2, leaving k terms where k = n/d + d/2 - abs(n/d - d/2). It can be shown T(n,k) = d.
This sequence thereby defines a one to one relationship between odd divisors of n and partitions of n into k consecutive parts.
The relationship is expressed below using 4 sequences (with matching row lengths), starting with this one:
A261699(n,k) = d, the odd divisor.
A211343(n,k) = abs(n/d - d/2) + 1/2, smallest part.
A285914(n,k) = k, number of parts.
A286013(n,k) = n/d + (d-1)/2, largest part.
If no partition of n into k consecutive parts exists, the corresponding sequence terms are 0.
(End)

Examples

			Triangle begins:
1;
1;
1,  3;
1,  0;
1,  5;
1,  0,  3;
1,  7,  0;
1,  0,  0;
1,  9,  3;
1,  0,  0,  5;
1, 11,  0,  0;
1,  0,  3,  0;
1, 13,  0,  0;
1,  0,  0,  7;
1, 15,  3,  0,  5;
1,  0,  0,  0,  0;
1, 17,  0,  0,  0;
1,  0,  3,  9,  0;
1, 19,  0,  0,  0;
1,  0,  0,  0,  5;
1, 21,  3,  0,  0,  7;
1,  0,  0, 11,  0,  0;
1, 23,  0,  0,  0,  0;
1,  0,  3,  0,  0,  0;
1, 25,  0,  0,  5,  0;
1,  0,  0, 13,  0,  0;
1, 27,  3,  0,  0,  9;
1,  0,  0,  0,  0,  0,  7;
...
From _Omar E. Pol_, Dec 19 2016: (Start)
Illustration of initial terms in a right triangle whose structure is the same as the structure of A237591:
Row                                                         _
1                                                         _|1|
2                                                       _|1 _|
3                                                     _|1  |3|
4                                                   _|1   _|0|
5                                                 _|1    |5 _|
6                                               _|1     _|0|3|
7                                             _|1      |7  |0|
8                                           _|1       _|0 _|0|
9                                         _|1        |9  |3 _|
10                                      _|1         _|0  |0|5|
11                                    _|1          |11  _|0|0|
12                                  _|1           _|0  |3  |0|
13                                _|1            |13   |0 _|0|
14                              _|1             _|0   _|0|7 _|
15                            _|1              |15   |3  |0|5|
16                          _|1               _|0    |0  |0|0|
17                        _|1                |17    _|0 _|0|0|
18                      _|1                 _|0    |3  |9  |0|
19                    _|1                  |19     |0  |0 _|0|
20                  _|1                   _|0     _|0  |0|5 _|
21                _|1                    |21     |3   _|0|0|7|
22              _|1                     _|0      |0  |11 |0|0|
23            _|1                      |23      _|0  |0  |0|0|
24          _|1                       _|0      |3    |0 _|0|0|
25        _|1                        |25       |0   _|0|5  |0|
26      _|1                         _|0       _|0  |13 |0 _|0|
27    _|1                          |27       |3    |0  |0|9 _|
28   |1                            |0        |0    |0  |0|0|7|
... (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_?OddQ] /; n == k (k + 1)/2 := k; T[n_, k_?OddQ] /; Mod[n - k (k + 1)/2, k] == 0 := k; T[n_, k_?EvenQ] /; n == k (k + 1)/2 := k + 1; T[n_, k_?EvenQ] /; Mod[n - k (k + 1)/2, k] == 0 := T[n - k, k] + 2; T[, ] = 0; Table[T[n, k], {n, 1, 26}, {k, 1, Floor[(Sqrt[1 + 8 n] - 1)/2]}] // Flatten (* Jean-François Alcover, Sep 21 2015 *)
    (* alternate definition using function a237048 *)
    T[n_, k_] := If[a237048[n, k] == 1, If[OddQ[k], k, 2n/k], 0] (* Hartmut F. W. Hoft, Oct 25 2015 *)

Formula

From Hartmut F. W. Hoft, Oct 25 2015: (Start)
T(n, k) = 2n/k, if A237048(n, k) = 1 and k even,
and in accordance with the definition:
T(n, k) = k, if A237048(n, k) = 1 and k odd,
T(n, k) = 0 otherwise; for k <= A003056(n).
(End)
For m >= 1, d >= 1 and odd, T(m*d, m + d/2 - abs(m - d/2)) = d. - Peter Munn, Jul 24 2017

A050999 Sum of squares of odd divisors of n.

Original entry on oeis.org

1, 1, 10, 1, 26, 10, 50, 1, 91, 26, 122, 10, 170, 50, 260, 1, 290, 91, 362, 26, 500, 122, 530, 10, 651, 170, 820, 50, 842, 260, 962, 1, 1220, 290, 1300, 91, 1370, 362, 1700, 26, 1682, 500, 1850, 122, 2366, 530, 2210, 10, 2451, 651, 2900, 170, 2810, 820, 3172, 50, 3620, 842, 3482
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta_2(n) in Glaisher 1907. - Michael Somos, May 17 2013
The sum of squares of even divisors of 2*k = 4*A001157(k), and the sum of squares of even divisors of 2*k-1 vanishes, for k >= 1. - Wolfdieter Lang, Jan 07 2017

Examples

			x + x^2 + 10*x^3 + x^4 + 26*x^5 + 10*x^6 + 50*x^7 + x^8 + 91*x^9 + 26*x^10 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).

Crossrefs

Programs

  • Haskell
    a050999 = sum . map (^ 2) . a182469_row
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    a[n_] := 1/2*Sum[(1 - (-1)^d)*d^2, {d, Divisors[n]}]; Table[a[n], {n, 1, 59}] (* Jean-François Alcover, Oct 23 2012, from 2nd formula *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d^2, {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
    f[p_, e_] := If[p == 2, 1, (p^(2*e + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
    Table[Total[Select[Divisors[n],OddQ]^2],{n,80}] (* Harvey P. Dale, Jul 19 2024 *)
  • PARI
    a(n)=sumdiv(n,d, if(d%2==1, d^2, 0 ) );  /* Joerg Arndt, Oct 07 2012 */
    
  • Python
    from sympy import divisor_sigma
    def A050999(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),2)) # Chai Wah Wu, Jul 16 2022

Formula

From Vladeta Jovovic, Sep 10 2001: (Start)
Multiplicative with a(p^e) = 1 if p = 2, (p^(2e+2)-1)/(p^2-1) if p > 2.
a(n) = (1/2)*Sum_{d|n} (1-(-1)^d)*d^2.
a(2n) = sigma_2(2n) - 4*sigma_2(n), a(2n+1) = sigma_2(2n+1), where sigma_2(n) is sum of squares of divisors of n (A001157).
More generally, if b(n, k) is the sum of k-th powers of odd divisors of n then b(2n, k) = sigma_k(2n)-2^k*sigma_k(n), b(2n+1, k) = sigma_k(2n+1). b(n, k) is multiplicative with a(p^e) = 1 if p = 2, (p^(k*e+k)-1)/(p^k-1) if p > 2. (End)
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1-(2^k-1)*x^m)/(1-x^(2*m)). - Vladeta Jovovic, Oct 19 2002
Dirichlet g.f. (1-2^(2-s))*zeta(s)*zeta(s-2). - R. J. Mathar, Apr 06 2011
Dirichlet convolution of A001157 with [1,-4,0,0,0,0...]. Dirichlet convolution of [1,-3,1,-3,1,-3,..] with A000290. Dirichlet convolution of [1,0,9,0,25,0,49,0,81,...] with A000012 (or A057427). - R. J. Mathar, Jun 28 2011
a(n) = sum(A182469(n,k)^2: k=1..A001227(n)). [Reinhard Zumkeller, May 01 2012]
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 09 2018
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(2*n) + x^(4*n))/(1 - x^(2*n))^3. - Peter Bala, Dec 19 2021
Sum_{k=1..n} (-1)^(k+1) * a(k) ~ zeta(3) * n^3 / 8. - Vaclav Kotesovec, Aug 07 2022

A051000 Sum of cubes of odd divisors of n.

Original entry on oeis.org

1, 1, 28, 1, 126, 28, 344, 1, 757, 126, 1332, 28, 2198, 344, 3528, 1, 4914, 757, 6860, 126, 9632, 1332, 12168, 28, 15751, 2198, 20440, 344, 24390, 3528, 29792, 1, 37296, 4914, 43344, 757, 50654, 6860, 61544, 126, 68922, 9632, 79508, 1332, 95382, 12168, 103824, 28
Offset: 1

Views

Author

Keywords

Comments

The sum of cubes of even divisors of 2*k equals 8*A001158(k), and the sum of cubes of even divisors of 2*k-1 vanishes, for k >= 1. - Wolfdieter Lang, Jan 07 2017
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 21 2020

Crossrefs

Programs

  • Haskell
    a051000 = sum . map (^ 3) . a182469_row
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    Table[Total[Select[Divisors[n],OddQ]^3],{n,50}] (* Harvey P. Dale, Jun 28 2012 *)
    f[2, e_] := 1; f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)*d^3); \\ Michel Marcus, Jan 04 2017
    
  • Python
    from sympy import divisor_sigma
    def A051000(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),3)) # Chai Wah Wu, Jul 16 2022

Formula

Dirichlet g.f.: (1-2^(3-s))*zeta(s)*zeta(s-3). Dirichlet convolution of (-1)^n*A176415(n) and A000578. - R. J. Mathar, Apr 06 2011
a(n) = Sum_{k=1..A001227(n)} A182469(n,k)^3. - Reinhard Zumkeller, May 01 2012
G.f.: Sum_{k>=1} (2*k - 1)^3*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 720. - Vaclav Kotesovec, Jan 31 2019
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(3*e+3)-1)/(p^3-1) for p > 2. - Amiram Eldar, Sep 14 2020
For k>=0, a(2^k) = 1. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{n >= 1} x^n*(1 + 23*x^(2*n) + 23*x^(4*n) + x^(6*n))/(1 - x^(2*n))^4. See row 4 of A060187. - Peter Bala, Dec 20 2021
a(n) = Sum_{k=0..n-1} A000203(2*n-2*k-1)*A000203(2*k+1)/A006519(n)^3 (Ewell, 2007). - Amiram Eldar, Feb 24 2024

A069283 a(n) = -1 + number of odd divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 0, 3, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 1, 5, 1, 1, 1, 2, 2, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 1, 1, 5, 0, 3, 3, 1, 1, 3, 3, 1, 2, 1, 1, 5, 1, 3, 3, 1, 1, 4, 1, 1, 3, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 3, 1, 1, 2, 5, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2002

Keywords

Comments

Number of nontrivial ways to write n as sum of at least 2 consecutive integers. That is, we are not counting the trivial solution n=n. E.g., a(9)=2 because 9 = 4 + 5 and 9 = 2 + 3 + 4. a(8)=0 because there are no integers m and k such that m + (m+1) + ... + (m+k-1) = 8 apart from k=1, m=8. - Alfred Heiligenbrunner, Jun 07 2004
Also number of sums of sequences of consecutive positive integers excluding sequences of length 1 (e.g., 9 = 2+3+4 or 4+5 so a(9)=2). (Useful for cribbage players.) - Michael Gilleland, Dec 29 2002
Let M be any positive integer. Then a(n) = number of proper divisors of M^n + 1 of the form M^k + 1.
This sequence gives the distinct differences of triangular numbers Ti giving n : n = Ti - Tj; none if n = 2^k. If factor a = n or a > (n/a - 1)/2 : i = n/a + (a - 1)/2; j = n/a - (a+1)/2. Else : i = n/2a + (2a - 1)/2; j = n/2a - (2a - 1)/2. Examples: 7 is prime; 7 = T4 - T2 = (1 + 2 + 3 + 4) - (1 + 2) (a = 7; n/a = 1). The odd factors of 35 are 35, 7 and 5; 35 = T18 - T16 (a = 35) = T8 - T1 (a = 7) = T5 - T7 (a = 5). 144 = T20 - T11 (a = 9) = T49 - T46 (a = 3). - M. Dauchez (mdzzdm(AT)yahoo.fr), Oct 31 2005
Also number of partitions of n into the form 1 + 2 + ...( k - 1) + k + k + ... + k for some k >= 2. Example: a(9) = 2 because we have [2, 2, 2, 2, 1] and [3, 3, 2, 1]. - Emeric Deutsch, Mar 04 2006
a(n) is the number of nontrivial runsum representations of n, and is also known as the politeness of n. - Ant King, Nov 20 2010
Also number of nonpowers of 2 dividing n, divided by the number of powers of 2 dividing n, n > 0. - Omar E. Pol, Aug 24 2019
a(n) only depends on the prime signature of A000265(n). - David A. Corneth, May 30 2020, corrected by Charles R Greathouse IV, Oct 31 2021

Examples

			a(14) = 1 because the divisors of 14 are 1, 2, 7, 14, and of these, two are odd, 1 and 7, and -1 + 2 = 1.
a(15) = 3 because the divisors of 15 are 1, 3, 5, 15, and of these, all four are odd, and -1 + 4 = 3.
a(16) = 0 because 16 has only one odd divisor, and -1 + 1 = 0.
Using Ant King's formula: a(90) = 5 as 90 = 2^1 * 3^2 * 5^1, so a(90) = (1 + 2) * (1 + 1) - 1 = 5. - _Giovanni Ciriani_, Jan 12 2013
x^3 + x^5 + x^6 + x^7 + 2*x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + ...
a(120) = 3 as the odd divisors of 120 are the odd divisors of 15 as 120 = 15*2^3. 15 has 4 odd divisors so that gives a(120) = 4 - 1 = 3. - _David A. Corneth_, May 30 2020
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994, see exercise 2.30 on p. 65.

Crossrefs

Cf. A095808 (sums of ascending and descending consecutive integers).

Programs

  • Haskell
    a069283 0 = 0
    a069283 n = length $ tail $ a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Magma
    [0] cat [-1 + #[d:d in Divisors(n)| IsOdd(d)]:n in [1..100]]; // Marius A. Burtea, Aug 24 2019
    
  • Maple
    g:=sum(x^(k*(k+1)/2)/(1-x^k),k=2..20): gser:=series(g,x=0,115): seq(coeff(gser,x,n),n=0..100); # Emeric Deutsch, Mar 04 2006
    A069283 := proc(n)
        A001227(n)-1 ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    g[n_] := Module[{dL = Divisors[2n], dP}, dP = Transpose[{dL, 2n/dL}]; Select[dP, ((1 < #[[1]] < #[[2]]) && (Mod[ #[[1]] - #[[2]], 2] == 1)) &] ]; Table[Length[g[n]], {n, 1, 100}]
    Table[Length[Select[Divisors[k], OddQ[#] &]] - 1, {k, 100}] (* Ant King, Nov 20 2010 *)
    Join[{0}, Times @@@ (#[[All, 2]] & /@ Replace[FactorInteger[Range[2, 50]], {2, a_} -> {2, 0}, Infinity] + 1) - 1] (* Horst H. Manninger, Oct 30 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d%2) - 1)} /* Michael Somos, Aug 07 2013 */
    
  • PARI
    a(n) = numdiv(n >> valuation(n, 2)) - 1 \\ David A. Corneth, May 30 2020
    
  • Python
    from sympy import divisor_count
    def A069283(n): return divisor_count(n>>(~n&n-1).bit_length())-1 if n else 0 # Chai Wah Wu, Jul 16 2022

Formula

a(n) = 0 if and only if n = 2^k.
a(n) = A001227(n)-1.
a(n) = 1 if and only if n = 2^k * p where k >= 0 and p is an odd prime. - Ant King, Nov 20 2010
G.f.: sum(k>=2, x^(k(k + 1)/2)/(1 - x^k) ). - Emeric Deutsch, Mar 04 2006
If n = 2^k p1^b1 p2^b2 ... pr^br, then a(n) = (1 + b1)(1 + b2) ... (1 + br) - 1. - Ant King, Nov 20 2010
Dirichlet g.f.: (zeta(s)*(1-1/2^s) - 1)*zeta(s). - Geoffrey Critzer, Feb 15 2015
a(n) = (A000005(n) - A001511(n))/A001511(n) = A326987(n)/A001511(n), with n > 0 in both formulas. - Omar E. Pol, Aug 24 2019
G.f.: Sum_{k>=1} x^(3*k) / (1 - x^(2*k)). - Ilya Gutkovskiy, May 30 2020
From David A. Corneth, May 30 2020: (Start)
a(2*n) = a(n).
a(n) = A001227(A000265(n)) - 1. (End)
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 3/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023

Extensions

Edited by Vladeta Jovovic, Mar 25 2002

A379288 Irregular triangle read by rows in which row n lists the odd divisors of n excluding odd divisors e for which there exists another divisor j with j < e < 2*j.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 1, 13, 1, 7, 1, 3, 15, 1, 1, 17, 1, 1, 19, 1, 1, 3, 7, 21, 1, 11, 1, 23, 1, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 1, 29, 1, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 35, 1, 1, 37, 1, 19, 1, 3, 13, 39, 1, 1, 41, 1, 1, 43
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2024

Keywords

Comments

The excluded divisors are the odd divisors e listed in A005279.
Conjecture 1: the row lengths are given by A237271 (true for at least the first 10000 terms of A237271)
From Hartmut F. W. Hoft, Jan 09 2025: (Start)
Proof of Conjecture 1:
An entire part of SRS(n), n = 2^k * q with k >= 0 and q odd, up to the diagonal is described in row n of A249223 by a 1 in position d, an odd divisor of n, 0's in positions d-1 and 2^(k+1) * f, f >= d an odd divisor of n, and nonzero numbers that increase or decrease by 1 in between.
The odd divisors e of n with d < e < 2^(k+1) * f are the "e" odd divisors of A005279 since for divisor s of n, d < s < e < 2*s < 2^(k+1) * f holds.
The odd divisors u of n greater than A003056(n) are encoded by the 2^(k+1) * f above as u = q/f and odd divisors d < A003056(n) are also encoded as 2^(k+1) * q/d. Then odd divisors e of n with q/f < e < 2^(k+1) * q/d are the "e" odd divisors of A005279 since for divisor t of n, q/f < t < e < 2*t < 2^(k+1) * q/d holds.
For a part containing the diagonal the inequalities above hold on the respective sides of the diagonal.
As a consequence the number of entries in row n of this triangle equals A237271(n). (End)
From Omar E. Pol, Jun 26 2025: (Start)
Conjecture 2: T(n,m) is the smallest number in the m-th 2-dense sublist of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
If the conjecture is true so row sums give A379379 and the row lengths give A237271, and the same row lengths have the sequences A384222, A384225 and A384226. Also the conjecture of A384149 should be true.
Observation: at least for the first 5000 rows (the first 15542 terms) the conjecture 2 coincides with the definition from the Name section and the row lengths give A237271.
An example of the conjecture 2, for n = 1..24 is as shown below:
-------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
--------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 3; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 5; | [1], [5]; | 2 |
| 6 | 1; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 7; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 3, 9; | [1], [3], [9]; | 3 |
| 10 | 1, 5; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 11; | [1], [11]; | 2 |
| 12 | 1; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 13; | [1], [13]; | 2 |
| 14 | 1, 7; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 3, 15; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 17; | [1], [17]; | 2 |
| 18 | 1; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 19; | [1], [19]; | 2 |
| 20 | 1; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 3, 7, 21; | [1], [3], [7], [21]; | 4 |
| 22 | 1, 11; | [1, 2], [11, 22]; | 2 |
| 23 | 1, 23; | [1], [23]; | 2 |
| 24 | 1; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10]. The smallest numbers in the sublists are [1, 5] respectively, so the row 10 is [1, 5].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. The smallest numbers in the sublists are [1, 3, 15] respectively, so the row 15 is [1, 3, 15].
78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The smallest numbers in the sublists are [1, 13] respectively, so the row 78 is [1, 13].
(End)
Conjecture 3: T(n,m) is the m-th divisor p of n such that p is greater than twice the adjacent previous divisor of n. - Omar E. Pol, Aug 02 2025

Crossrefs

These are the odd terms of A379374.
Subsequence of A182469.
Row sums give A379379.

Programs

  • Mathematica
    row[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Select[Join[{1}, Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]], OddQ]]; Table[row[n], {n, 1, 50}] // Flatten (* Amiram Eldar, Dec 22 2024 *)

Extensions

More terms from Amiram Eldar, Dec 22 2024
Showing 1-10 of 29 results. Next