cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106731 Expansion of -2*x/(1 - 4*x + 2*x^2).

Original entry on oeis.org

0, -2, -8, -28, -96, -328, -1120, -3824, -13056, -44576, -152192, -519616, -1774080, -6057088, -20680192, -70606592, -241065984, -823050752, -2810071040, -9594182656, -32756588544, -111837988864, -381838778368, -1303679135744, -4451038986240, -15196797673472
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

See a Oct 01 2013 comment on A007070 where it is pointed out that this sequence, interspersed with zeros, appears, together with A007070, also interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) in the power basis of the number field Q(rho(8)) of degree 4, known from the octagon. - Wolfdieter Lang, Oct 02 2013

Crossrefs

Programs

  • Magma
    [n le 2 select -(1+(-1)^n) else 4*Self(n-1) - 2*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
    
  • Maple
    a[0]:=0: a[1]:=-2: for n from 2 to 27 do a[n]:=4*a[n-1]-2*a[n-2] od: seq(a[n], n=0..30);
  • Mathematica
    M= {{0,-2}, {1,4}}; v[1]= {0,1}; v[n_]:= v[n]= M.v[n-1]; Table[Abs[v[n][[1]]], {n, 30}]
    CoefficientList[Series[-2x/(1 -4x +2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
  • Sage
    def a(n): return -2^((n+2)/2)*lucas_number1(n,2,-1) if (n%2==0) else -2^((n-1)/2)*lucas_number2(n,2,-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 10 2021

Formula

G.f.: -2*x/(1-4*x+2*x^2).
a(n) = -2*A007070(n-1) for n>=1.
a(n) = 4*a(n-1) - 2*a(n-2); a(0)=0, a(1)=-2.
From G. C. Greubel, Sep 10 2021: (Start)
a(2*n) = -2^(n+1)*Pell(2*n) = -2^(n+1)*A000129(2*n).
a(2*n+1) = -2^n*Q(2n+1) = -2^n*A002203(2*n+1). (End)
E.g.f.: -sqrt(2)*exp(2*x)*sinh(sqrt(2)*x). - Stefano Spezia, May 20 2024

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Further editing and simpler name, Joerg Arndt, Oct 02 2013