A244918
Primes p where the digital sum is equal to 68.
Original entry on oeis.org
59999999, 69999899, 69999989, 78998999, 88989899, 88999979, 89699999, 89799989, 89989799, 89989979, 89997899, 89997989, 89999699, 89999969, 97889999, 98699999, 98879999, 98899799, 98979989, 98988899, 98989889, 98997989, 98998979, 98999969
Offset: 1
69999899 is a prime with sum of the digits = 68, hence belongs to the sequence.
Cf. Primes p where the digital sum is equal to k: 2, 11 and 101 for k=2;
A062339 (k=4),
A062341 (k=5),
A062337 (k=7),
A062343 (k=8),
A107579 (k=10),
A106754 (k=11),
A106755 (k=13),
A106756 (k=14),
A106757 (k=16),
A106758 (k=17),
A106759 (k=19),
A106760 (k=20),
A106761 (k=22),
A106762 (k=23),
A106763 (k=25),
A106764 (k=26),
A048517 (k=28),
A106766 (k=29),
A106767 (k=31),
A106768 (k=32),
A106769 (k=34),
A106770 (k=35),
A106771 (k=37),
A106772 (k=38),
A106773 (k=40),
A106774 (k=41),
A106775 (k=43),
A106776 (k=44),
A106777 (k=46),
A106778 (k=47),
A106779 (k=49),
A106780 (k=50),
A106781 (k=52),
A106782 (k=53),
A106783 (k=55),
A106784 (k=56),
A106785 (k=58),
A106786 (k=59),
A106787 (k=61),
A107617 (k=62),
A107618 (k=64),
A107619 (k=65),
A106807 (k=67), this sequence (k=68),
A181321 (k=70).
-
[p: p in PrimesUpTo(100000000) | &+Intseq(p) eq 68];
-
Select[Prime[Range[10000000]], Total[IntegerDigits[#]]==68 &]
-
# see code in A107579: the same code can be used to produce this sequence, by giving the initial term p = 6*10**7-1, for digit sum 68. - M. F. Hasler, Mar 16 2022
A062339
Primes whose sum of digits is 4.
Original entry on oeis.org
13, 31, 103, 211, 1021, 1201, 2011, 3001, 10111, 20011, 20101, 21001, 100003, 102001, 1000003, 1011001, 1020001, 1100101, 2100001, 10010101, 10100011, 20001001, 30000001, 101001001, 200001001, 1000000021, 1000001011, 1000010101, 1000020001, 1000200001, 1002000001, 1010000011
Offset: 1
3001 is a prime with sum of digits = 4, hence belongs to the sequence.
Cf. Primes p with digital sum equal to k: {2, 11 and 101} for k=2; this sequence (k=4),
A062341 (k=5),
A062337 (k=7),
A062343 (k=8),
A107579 (k=10),
A106754 (k=11),
A106755 (k=13),
A106756 (k=14),
A106757 (k=16),
A106758 (k=17),
A106759 (k=19),
A106760 (k=20),
A106761 (k=22),
A106762 (k=23),
A106763 (k=25),
A106764 (k=26),
A048517 (k=28),
A106766 (k=29),
A106767 (k=31),
A106768 (k=32),
A106769 (k=34),
A106770 (k=35),
A106771 (k=37),
A106772 (k=38),
A106773 (k=40),
A106774 (k=41),
A106775 (k=43),
A106776 (k=44),
A106777 (k=46),
A106778 (k=47),
A106779 (k=49),
A106780 (k=50),
A106781 (k=52),
A106782 (k=53),
A106783 (k=55),
A106784 (k=56),
A106785 (k=58),
A106786 (k=59),
A106787 (k=61),
A107617 (k=62),
A107618 (k=64),
A107619 (k=65),
A106807 (k=67),
A244918 (k=68),
A181321 (k=70).
Cf.
A020449 (primes with digits 0 and 1),
A036953 (primes with digits <= 2),
A106100 (primes with largest digit = 2),
A069663,
A069664 (smallest resp. largest n-digit prime with minimum digit sum).
-
[p: p in PrimesUpTo(800000000) | &+Intseq(p) eq 4]; // Vincenzo Librandi, Jul 08 2014
-
N:= 20: # to get all terms < 10^N
B[1]:= {1}:
B[2]:= {2}:
B[3]:= {3}:
A:= {}:
for d from 2 to N do
B[4]:= map(t -> 10*t+1,B[3]) union map(t -> 10*t+3,B[1]);
B[3]:= map(t -> 10*t, B[3]) union map(t -> 10*t+1,B[2]) union map(t -> 10*t+2,B[1]);
B[2]:= map(t -> 10*t, B[2]) union map(t -> 10*t+1,B[1]);
B[1]:= map(t -> 10*t, B[1]);
A:= A union select(isprime,B[4]);
od:
sort(convert(A,list)); # Robert Israel, Dec 28 2015
-
Union[FromDigits/@Select[Flatten[Table[Tuples[{0,1,2,3},k],{k,9}],1],PrimeQ[FromDigits[#]]&&Total[#]==4&]] (* Jayanta Basu, May 19 2013 *)
FromDigits/@Select[Tuples[{0,1,2,3},10],Total[#]==4&&PrimeQ[FromDigits[#]]&] (* Harvey P. Dale, Jul 23 2025 *)
-
for(a=1,20,for(b=0,a,for(c=0,b,if(isprime(k=10^a+10^b+10^c+1),print1(k", "))))) \\ Charles R Greathouse IV, Jul 26 2011
-
select( {is_A062339(p,s=4)=sumdigits(p)==s&&isprime(p)}, primes([1,10^7])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
-
A062339_upto_length(L,s=4,a=List(),u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Vecrev(a) \\ M. F. Hasler, Mar 09 2022
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
A119891
Prime trio leaders: largest number of a prime trio.
Original entry on oeis.org
29, 47, 83, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 599, 641, 797, 821, 887, 911, 977, 1019, 1091, 1109, 1163, 1181, 1217, 1307, 1361, 1433, 1451, 1499, 1523, 1613, 1697, 1721, 1787, 1811, 1877, 1901, 1949, 2027, 2063, 2081, 2153, 2207, 2243
Offset: 1
Luc Stevens (lms022(AT)yahoo.com), May 27 2006
443 is in the sequence because it is the largest number of the prime trio (443, 11, 2).
599 is the first term with sum of digits different from 11 (cf. A106754), namely 23 (cf. A106762). This sequence contains also all primes with sum of digits equal to 41, 43, 61 etc., but not 29, 47, ... since the second digit sum must be a single-digit prime, i.e., 2, 3, 5 or 7. - _M. F. Hasler_, Mar 09 2022
-
filter:= proc(n) local x,y;
if not isprime(n) then return false fi;
x:= convert(convert(n,base,10),`+`);
if x < 10 or not isprime(x) then return false fi;
y:= convert(convert(x,base,10),`+`);
member(y,{2,3,5,7})
end proc:
select(filter, [seq(i,i=11..10000,2)]); # Robert Israel, May 21 2021
-
ptQ[n_]:=Module[{c=NestList[Total[IntegerDigits[#]]&,n,2]},Length[ Union[c]] == 3&&And@@PrimeQ[c]]; Select[Prime[Range[500]],ptQ] (* Harvey P. Dale, Aug 15 2012 *)
-
select( {is_A119891(n, s=sumdigits(n))=bittest(172, sumdigits(s)) && isprime(s) && s>9 && isprime(n)}, primes([1,2345])) \\ M. F. Hasler, Mar 09 2022
Showing 1-3 of 3 results.
Comments