A106839 Numbers congruent to 11 mod 16.
11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 587, 603, 619, 635, 651, 667, 683, 699, 715, 731, 747, 763, 779, 795, 811, 827, 843
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[[ n : n in [1..1000] | n mod 16 eq 11]]; // Vincenzo Librandi, Oct 10 2011
-
Mathematica
Range[11, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *) LinearRecurrence[{2,-1},{11,27},60] (* Harvey P. Dale, Aug 12 2021 *)
-
PARI
a(n)=16*n+11 \\ Charles R Greathouse IV, Oct 16 2015
-
Python
def a(n): return 11 + 16*n print([a(n) for n in range(53)]) # Michael S. Branicky, Nov 27 2021
Formula
G.f.: x*(11+5*x)/(x-1)^2. - R. J. Mathar, Oct 08 2011
From Vincenzo Librandi, Oct 10 2011: (Start)
a(n) = 11 + 16*n.
a(n) = 32*n - a(n-1) + 6, a(0)=11. (End)
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(11 + 16*x).
a(n) = 2*a(n-1) - a(n-2).
a(n) = A017101(2*n+1). (End)