cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A106903 Primes of the form x^2+xy+13y^2, with x and y nonnegative.

Original entry on oeis.org

13, 19, 43, 67, 103, 127, 151, 157, 223, 229, 271, 307, 331, 349, 373, 409, 421, 433, 457, 523, 577, 613, 661, 727, 733, 739, 757, 769, 829, 859, 883, 919, 937, 967, 1021, 1063, 1069, 1087, 1123, 1171, 1237, 1249, 1327, 1381, 1429, 1447, 1453, 1471
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-51.
Differs from A106904 from a(20) = 523 on, A106904(20) = 463. Since x^2 + xy + y^2 = (x+y)^2 - (x+y)y + y^2, this sequence is a subsequence of A106904. - M. F. Hasler, Jan 15 2016

Programs

  • Mathematica
    QuadPrimes2[1, 1, 13, 10000] (* see A106856 *)
  • PARI
    select(p->isprime(p)&&(t=qfbsolve(Qfb(1,1,13),p))&&t[1]>=0,[1..1500]) \\ M. F. Hasler, Jan 15 2016

A267478 Primes which are squares (mod 55).

Original entry on oeis.org

5, 11, 31, 59, 71, 89, 179, 181, 191, 199, 229, 251, 269, 311, 331, 379, 389, 401, 419, 421, 449, 499, 509, 521, 599, 619, 631, 641, 661, 691, 709, 719, 751, 829, 839, 859, 881, 911, 929, 971, 991, 1021, 1039, 1049, 1061, 1109, 1171, 1181, 1259, 1279, 1291, 1301, 1321, 1409, 1439, 1489, 1499
Offset: 1

Author

M. F. Hasler, Jan 15 2016

Keywords

Comments

5, 11 and all primes congruent to 1, 4, 9, 14, 16, 26, 31, 34, 36, or 49 (mod 55). - Robert Israel, Jan 15 2016

Crossrefs

Cf. A106904 and adjacent sequences.
Cf. A191036.

Programs

  • Maple
    S55:= {seq(x^2 mod 55, x=0..27)}:
    select(t -> member(t mod 55, S55), [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Join[{5,11},Select[Prime[Range[250]],MemberQ[{1,4,9,14,16,26,31,34,36,49},Mod[#,55]]&]] (* Harvey P. Dale, Jan 17 2022 *)
  • PARI
    select(p->issquare(Mod(p,55))&&isprime(p),[1..1500]) \\ It would be more efficient to select only among primes, replacing [1..1500] by primes([1,1500]), in which case the isprime() condition can be omitted from the selection function. But we wanted to provide a universally valid characteristic function in the 1st argument of select(). - M. F. Hasler, Jan 15 2016
Showing 1-4 of 4 results.