A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A191034 Primes p with Jacobi symbol (p|51) = 1.
5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1
Comments
Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
-
Mathematica
Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]
Extensions
Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
A106903 Primes of the form x^2+xy+13y^2, with x and y nonnegative.
13, 19, 43, 67, 103, 127, 151, 157, 223, 229, 271, 307, 331, 349, 373, 409, 421, 433, 457, 523, 577, 613, 661, 727, 733, 739, 757, 769, 829, 859, 883, 919, 937, 967, 1021, 1063, 1069, 1087, 1123, 1171, 1237, 1249, 1327, 1381, 1429, 1447, 1453, 1471
Offset: 1
Comments
Discriminant=-51.
Differs from A106904 from a(20) = 523 on, A106904(20) = 463. Since x^2 + xy + y^2 = (x+y)^2 - (x+y)y + y^2, this sequence is a subsequence of A106904. - M. F. Hasler, Jan 15 2016
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[1, 1, 13, 10000] (* see A106856 *)
-
PARI
select(p->isprime(p)&&(t=qfbsolve(Qfb(1,1,13),p))&&t[1]>=0,[1..1500]) \\ M. F. Hasler, Jan 15 2016
A267478 Primes which are squares (mod 55).
5, 11, 31, 59, 71, 89, 179, 181, 191, 199, 229, 251, 269, 311, 331, 379, 389, 401, 419, 421, 449, 499, 509, 521, 599, 619, 631, 641, 661, 691, 709, 719, 751, 829, 839, 859, 881, 911, 929, 971, 991, 1021, 1039, 1049, 1061, 1109, 1171, 1181, 1259, 1279, 1291, 1301, 1321, 1409, 1439, 1489, 1499
Offset: 1
Keywords
Comments
5, 11 and all primes congruent to 1, 4, 9, 14, 16, 26, 31, 34, 36, or 49 (mod 55). - Robert Israel, Jan 15 2016
Programs
-
Maple
S55:= {seq(x^2 mod 55, x=0..27)}: select(t -> member(t mod 55, S55), [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jan 15 2016
-
Mathematica
Join[{5,11},Select[Prime[Range[250]],MemberQ[{1,4,9,14,16,26,31,34,36,49},Mod[#,55]]&]] (* Harvey P. Dale, Jan 17 2022 *)
-
PARI
select(p->issquare(Mod(p,55))&&isprime(p),[1..1500]) \\ It would be more efficient to select only among primes, replacing [1..1500] by primes([1,1500]), in which case the isprime() condition can be omitted from the selection function. But we wanted to provide a universally valid characteristic function in the 1st argument of select(). - M. F. Hasler, Jan 15 2016
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions