cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A141170 Primes of the form x^2+4*x*y-2*y^2 (as well as of the form 3*x^2+6*x*y+y^2).

Original entry on oeis.org

3, 19, 43, 67, 73, 97, 139, 163, 193, 211, 241, 283, 307, 313, 331, 337, 379, 409, 433, 457, 499, 523, 547, 571, 577, 601, 619, 643, 673, 691, 739, 769, 787, 811, 859, 883, 907, 937, 1009, 1033, 1051, 1123, 1129, 1153, 1171, 1201, 1249, 1291, 1297, 1321, 1459, 1483, 1489, 1531
Offset: 1

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 24. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
Also, primes of form u^2 - 6v^2. The transformation {u,v} = {x+2y,y} yields the form in the title. - Tito Piezas III, Dec 31 2008
Conjecture: this is also the list of primes that are simultaneously of the form x^2+2y^2 and of the form x^2+3y^2; that is, the intersection of A002476 and A033203. - Zak Seidov, Jun 07 2014
This is also the list of primes p such that p = 3 or p is congruent to 1 or 19 mod 24. - Jean-François Alcover, Oct 28 2016

Examples

			a(2)=19 because we can write 19=3^2+4*3*1-2*1^2 (or 19=3*1^2+6*1*2+2^2)
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141171 (d=24), A106950 (Primes of the form x^2+18y^2), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Cf. also A242661, A002476, A033203.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    xy[{x_, y_}]:={x^2 + 4 x y - 2 y^2, y^2 + 4 x y - 2 x^2}; Union[Select[Flatten[xy/@Subsets[Range[40], {2}]], #>0&&PrimeQ[#]&]] (* Vincenzo Librandi, Jun 09 2014 *)
    Select[Prime[Range[250]], # == 3 || MatchQ[Mod[#, 24], 1|19]&] (* Jean-François Alcover, Oct 28 2016 *)

A139642 Irregular triangle where row n gives the congruence (mod 4N) for the primes represented by the quadratic form x^2+Ny^2, where N=A000926(n) is a convenient number.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 7, 1, 5, 9, 13, 1, 5, 9, 1, 7, 1, 7, 9, 11, 15, 23, 25, 1, 9, 17, 25, 1, 13, 25, 1, 9, 11, 19, 1, 13, 25, 37, 1, 9, 13, 17, 25, 29, 49, 1, 19, 31, 49, 1, 9, 17, 25, 33, 41, 49, 57, 1, 19, 25, 43, 49, 67, 1, 25, 37, 1, 9, 15, 23, 25, 31, 47, 49, 71, 81, 1, 25, 49, 73, 1, 9
Offset: 1

Author

T. D. Noe, Apr 28 2008

Keywords

Comments

Each row begins with 1. For example, the 12th row is for N=13. The numbers in that row are 1, 9, 17, 25, 29 and 49, which means that the primes represented by the quadratic form x^2+13y^2 (A033210) are congruent to 1, 9, 17, 25, 29,or 49 (mod 52). Cox lists some of these congruences on page 36 of his book. As mentioned by Cox, for these N, every term of the congruence has the form b^2 or N+b^2 for some integer b. In some cases, the congruences can be simplified. For instance, for N=18 (A106950), the congruence is 1, 19, 25, 43, 49, 67 (mod 72), which can be simplified to 1, 19 (mod 24).

Examples

			1, 2,
1, 2, 3,
1, 3, 7,
1, 5, 9, 13,
1, 5, 9,
1, 7,
1, 7, 9, 11, 15, 23, 25,
1, 9, 17, 25,
1, 13, 25,
1, 9, 11, 19,
1, 13, 25, 37,
1, 9, 13, 17, 25, 29, 49,
1, 19, 31, 49,
1, 9, 17, 25, 33, 41, 49, 57,
1, 19, 25, 43, 49, 67,
1, 25, 37,
1, 9, 15, 23, 25, 31, 47, 49, 71, 81,
1, 25, 49, 73,
...
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 3.

Crossrefs

See the Binary Quadratic Forms and OEIS link for full list of primes generated by x^2+Ny^2, where N is a convenient number.
Showing 1-3 of 3 results.