A107107 For each partition of n, calculate (dM2/dM3) where dM2 = A036039(p) and dM3 = A036040(p); then sum over all partitions of n.
1, 1, 2, 4, 11, 37, 168, 926, 6181, 47651, 418546, 4106264, 44537519, 528408261, 6807428748, 94588717554, 1409927483625, 22437711255279, 379674820846534, 6806486383431340, 128862216628864163, 2569080120361323721, 53797824318887051264, 1180533584545138213222
Offset: 0
Examples
For n = 6, (120,144,90,40,90,120,15,40,45,15,1) / (1,6,15,10,15,60,15,20,45,15,1) equals (120,24,6,4,6,2,1,2,1,1,1) so A107107(6) = 168.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ `if`(i>n, 0, b(n-i, i)*(i-1)!))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
-
Mathematica
nmax=20; CoefficientList[Series[Product[1/(1-(k-1)!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 15 2015 *)
-
Maxima
S(n,m):=if n=0 then 1 else if n
Vladimir Kruchinin, Sep 07 2014 */
Formula
For partition [], the contribution to the sum is product_i (c_i - 1)!^k_i.
G.f.: 1/Product_{m>0} (1-(m-1)!*x^m). - Vladeta Jovovic, Jul 10 2007
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k-1)!*S(n-k,k))+(n-1)!, S(n,n)=(n-1)!, S(0,m)=1, S(n,m)=0 for m>n. - Vladimir Kruchinin, Sep 07 2014
a(n) ~ (n-1)! * (1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1861/n^6 + 14815/n^7 + 138477/n^8 + 1497775/n^9 + 18465330/n^10). - Vaclav Kotesovec, Mar 15 2015
Extensions
Edited, corrected and extended by Franklin T. Adams-Watters, Nov 03 2005
More terms from Vladeta Jovovic, Jul 10 2007
Comments