cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107118 Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 19, 631, 21421, 727669, 24719311, 839728891, 28526062969, 969046412041, 32919051946411, 1118278719765919, 37988557420094821, 1290492673563457981, 43838762343737476519, 1489227427013510743651, 50589893756115627807601, 1718567160280917834714769
Offset: 1

Views

Author

Richard Choulet, Sep 18 2007

Keywords

Comments

The centered hexagonal numbers are given by 3*p^2 - 3*p + 1 while the centered triangular numbers are given by (3*r^2 + 3*r + 2)/2. A natural number is both of the above numbers if and only if there exist numbers p and r such that 2*(2p-1)^2 = (2*r+1)^2+1. The Diophantine equation X^2 = 2*Y^2 - 1 has the following solutions: X is given by 1, 7, 41, 239, ..., i.e., A002315, and Y is given by A001653. The first equation gives r with 0, 3, 20, 119, 6906, i.e., A001652, and p with 1, 3, 15, 85, 493, ..., i.e., A011900.

Crossrefs

Cf. A003215 (Centered hexagonal numbers), A005448 (Centered triangular numbers).

Programs

  • Mathematica
    a[n_] := 17*n - 7 + Sqrt[288*n^2 - 252*n + 45]; NestList[a, 1, 20] (* Stefan Steinerberger, Sep 18 2007 *)
    LinearRecurrence[{35,-35,1},{1,19,631},30] (* Harvey P. Dale, Jan 16 2016 *)
  • PARI
    Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-34*x+1)) + O(x^100)) \\ Colin Barker, Jan 02 2015

Formula

a(n+2) = 34*a(n+1) - a(n) - 14.
a(n+1) = 17*a(n) - 7 + sqrt(288*a(n)^2 - 252*a(n) + 45).
G.f.: h(z)=(z*(1-16*z+z^2))/((1-z)*(1-34*z+z^2)).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - Colin Barker, Jan 02 2015
a(n) = (14+(9+6*sqrt(2))*(17+12*sqrt(2))^(-n)+(9-6*sqrt(2))*(17+12*sqrt(2))^n)/32. - Colin Barker, Mar 02 2016

Extensions

More terms from Stefan Steinerberger, Sep 18 2007