cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A124923 a(n) = n^(n-1) + 1.

Original entry on oeis.org

2, 3, 10, 65, 626, 7777, 117650, 2097153, 43046722, 1000000001, 25937424602, 743008370689, 23298085122482, 793714773254145, 29192926025390626, 1152921504606846977, 48661191875666868482, 2185911559738696531969
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

Prime p divides a(p-1). n divides a(n-1) for all prime n and all odd composite n.
p divides a((p+1)/2) for prime p = {3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, ...} = A003629 (Primes congruent to {3,5} mod 8).
p divides a((p+3)/4) for prime p = {13, 73, 97, 109, 181, 229, 241, 277, 337, 409, 421, 457, 541, 709, 733, 757, 829, ...} = A107141 (Primes of the form 4x^2+9y^2).
p divides a((p+5)/6) for prime p = {43, 61, 79, 109, 151, 163, 181, 193, 313, 337, 433, 523, 577, 631, 643, 673, 787, 829, 907, 991, ...}.
p divides a((p+7)/8) for prime p = {113, 137, 569, 641, 673, 1129, 1289, 1297, 1481, 1801, ...}.
p divides a((3p-1)/2) for prime p = {5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 199, ...} = A003628 (Primes congruent to {5, 7} mod 8).
p^2 divides a((3p-1)/2) for prime p = {5, 13, 173, 5501, ...} = A124924.

Crossrefs

Programs

  • GAP
    List([1..20], n-> n^(n-1) + 1); # G. C. Greubel, Nov 19 2019
  • Magma
    [n^(n-1) + 1: n in [1..20]]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    seq(n^(n-1) + 1, n=1..20); # G. C. Greubel, Nov 19 2019
  • Mathematica
    Table[n^(n-1)+1, {n,20}]
  • PARI
    vector(20, n, n^(n-1) + 1) \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    [n^(n-1) + 1 for n in (1..20)] # G. C. Greubel, Nov 19 2019
    

Formula

a(n) = n^(n-1) + 1.
a(n) = A000169(n) + 1.
E.g.f.: -1 + exp(x) - W(-x), where W(x) is the Lambert w-function. - G. C. Greubel, Nov 19 2019
Showing 1-2 of 2 results.