cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107395 a(n) = binomial(n+4,4)*binomial(n+6,4).

Original entry on oeis.org

15, 175, 1050, 4410, 14700, 41580, 103950, 235950, 495495, 975975, 1821820, 3248700, 5569200, 9224880, 14825700, 23197860, 35441175, 52997175, 77729190, 112015750, 158858700, 222007500, 306101250, 416830050, 561117375, 747325215, 985483800, 1287547800
Offset: 0

Views

Author

Zerinvary Lajos, May 25 2005

Keywords

Examples

			If n=0 then C(0+4,4)*C(0+6,4) = C(4,4)*C(6,4) = 1*15 = 15.
If n=9 then C(9+4,4)*C(9+6,4) = C(13,4)*C(15,4) = 715*1365 = 975975.
		

Crossrefs

Programs

  • Magma
    A107395:= func< n | Binomial(n+4,4)*Binomial(n+6,4) >;
    [A107395(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    Table[Binomial[n+4,4]Binomial[n+6,4],{n,0,30}] (* Harvey P. Dale, Jun 07 2019 *)
  • SageMath
    def A107395(n): return binomial(n+4,4)*binomial(n+6,4)
    print([A107395(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 16*Pi^2 - 3946/25.
Sum_{n>=0} (-1)^n/a(n) = 1776/25 - 512*log(2)/5. (End)
G.f.: 5*(3 + 8*x + 3*x^2)/(1-x)^9. - G. C. Greubel, Feb 09 2025

Extensions

More terms from Harvey P. Dale, Jun 07 2019