cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107399 a(n) = binomial(n+8,8)*binomial(n+10,8).

Original entry on oeis.org

45, 1485, 22275, 212355, 1486485, 8281845, 38648610, 156434850, 563165460, 1837398420, 5512195260, 15380181180, 40281426900, 99773995860, 235181561670, 530311364550, 1149007956525, 2401177618125, 4855714738875, 9528883810875, 18191505457125
Offset: 0

Views

Author

Zerinvary Lajos, May 25 2005

Keywords

Examples

			If n=0 then C(0+8,8)*C(0+10,8) = C(8,8)*C(10,8) = 1*45 = 45.
If n=4 then C(7+8,8)*C(7+10,8) = C(15,8)*C(17,8) = 3003*12870 = 38648610.
		

Crossrefs

Cf. A062196.

Programs

  • Magma
    A107399:= func< n | Binomial(n+8,8)*Binomial(n+10,8) >;
    [A107399(n): n in [0..30]]; // G. C. Greubel, Feb 07 2025
    
  • Mathematica
    Table[Binomial[n+8,8]Binomial[n+10,8],{n,0,20}] (* Harvey P. Dale, Apr 03 2019 *)
  • SageMath
    def A107399(n): return binomial(n+8,8)*binomial(n+10,8)
    print([A107399(n) for n in range(31)]) # G. C. Greubel, Feb 07 2025

Formula

From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 64064*Pi^2/3 - 2987552614/14175.
Sum_{n>=0} (-1)^n/a(n) = 57237184/14175 - 262144*log(2)/45. (End)
G.f.: 45*(1 + 16*x + 70*x^2 + 112*x^3 + 70*x^4 + 16*x^5 + x^6)/(1-x)^17. - G. C. Greubel, Feb 07 2025

Extensions

More terms from Harvey P. Dale, Apr 03 2019