A107428 Number of gap-free compositions of n.
1, 2, 4, 6, 11, 21, 39, 71, 141, 276, 542, 1070, 2110, 4189, 8351, 16618, 33134, 66129, 131937, 263483, 526453, 1051984, 2102582, 4203177, 8403116, 16800894, 33593742, 67174863, 134328816, 268624026, 537192064, 1074288649, 2148414285, 4296543181, 8592585289
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Oct 04 2022: (Start) The a(0) = 1 through a(5) = 11 gap-free compositions: () (1) (2) (3) (4) (5) (11) (12) (22) (23) (21) (112) (32) (111) (121) (122) (211) (212) (1111) (221) (1112) (1121) (1211) (2111) (11111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Alois P. Heinz, Plot of (a(n)-2^(n-2))/2^(n-2) for n = 42..1000
- P. Hitczenko and A. Knopfmacher, Gap-free compositions and gap-free samples of geometric random variables, Discrete Math., 294 (2005), 225-239.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1 or n add(b(n, i, 0), i=1..n): seq(a(n), n=1..40); # Alois P. Heinz, Apr 14 2014
-
Mathematica
Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
Formula
a(n) ~ 2^(n-2). - Alois P. Heinz, Dec 07 2014
G.f.: Sum_{j>0} Sum_{k>=j} C({j..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, Jun 01 2024
Extensions
More terms from Vladeta Jovovic, May 26 2005
Comments