cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107429 Number of complete compositions of n.

Original entry on oeis.org

1, 1, 3, 4, 8, 18, 33, 65, 127, 264, 515, 1037, 2052, 4103, 8217, 16408, 32811, 65590, 131127, 262112, 524409, 1048474, 2097319, 4194250, 8389414, 16778024, 33557921, 67116113, 134235473, 268471790, 536948820, 1073893571, 2147779943, 4295515305, 8590928746
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2005

Keywords

Comments

A composition is complete if it is gap-free and contains a 1. - Geoffrey Critzer, Apr 13 2014

Examples

			a(5)=8 because we have: 2+2+1, 2+1+2, 1+2+2, 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2, 1+1+1+1+1. - _Geoffrey Critzer_, Apr 13 2014
		

Crossrefs

Row sums of A371417 and of A373118.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0),
          `if`(i<1 or n add(b(n, i, 0), i=1..n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 14 2014
  • Mathematica
    Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],MemberQ[#,1]&&Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[i == 0, t!, 0], If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]];
    a[n_] := Sum[b[n, i, 0], {i, 1, n}];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
  • PARI
    C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(setminus(s,[s[i]]),N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)}
    B_x(N)={my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, h += C_x(vector(j,i,i),N+1); j+=1); my(a = Vec(h)); vector(N,i,a[i])}
    B_x(35) \\ John Tyler Rascoe, May 25 2024

Formula

a(n) ~ 2^(n-2). - Vaclav Kotesovec, Sep 05 2014
G.f.: Sum_{k>0} C({1..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, May 24 2024

Extensions

More terms from Vladeta Jovovic, May 26 2005