A107429 Number of complete compositions of n.
1, 1, 3, 4, 8, 18, 33, 65, 127, 264, 515, 1037, 2052, 4103, 8217, 16408, 32811, 65590, 131127, 262112, 524409, 1048474, 2097319, 4194250, 8389414, 16778024, 33557921, 67116113, 134235473, 268471790, 536948820, 1073893571, 2147779943, 4295515305, 8590928746
Offset: 1
Keywords
Examples
a(5)=8 because we have: 2+2+1, 2+1+2, 1+2+2, 2+1+1+1, 1+2+1+1, 1+1+2+1, 1+1+1+2, 1+1+1+1+1. - _Geoffrey Critzer_, Apr 13 2014
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 70 terms from Daniel Reimhult)
- Alois P. Heinz, Plot of (a(n)-2^(n-2))/2^(n-2) for n = 40..1000
- P. Hitczenko and A. Knopfmacher, Gap-free compositions and gap-free samples of geometric random variables, Discrete Math., 294 (2005), 225-239.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0), `if`(i<1 or n add(b(n, i, 0), i=1..n): seq(a(n), n=1..40); # Alois P. Heinz, Apr 14 2014
-
Mathematica
Table[Length[Select[Level[Map[Permutations,IntegerPartitions[n]],{2}],MemberQ[#,1]&&Length[Union[#]]==Max[#]-Min[#]+1&]],{n,1,20}] (* Geoffrey Critzer, Apr 13 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[i == 0, t!, 0], If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
-
PARI
C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(setminus(s,[s[i]]),N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)} B_x(N)={my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, h += C_x(vector(j,i,i),N+1); j+=1); my(a = Vec(h)); vector(N,i,a[i])} B_x(35) \\ John Tyler Rascoe, May 25 2024
Formula
a(n) ~ 2^(n-2). - Vaclav Kotesovec, Sep 05 2014
G.f.: Sum_{k>0} C({1..k},x) where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) is the g.f. for compositions such that the set of parts equals {s} with C({},x) = 1. - John Tyler Rascoe, May 24 2024
Extensions
More terms from Vladeta Jovovic, May 26 2005
Comments