cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A359665 a(n) = Sum_{k=0..n} binomial(k^3, k).

Original entry on oeis.org

1, 2, 30, 2955, 638331, 235169606, 131748994154, 104332124742623, 110963563379491743, 152605484049946645638, 263562165946020159478038, 558488792578762177358255808, 1424733420462958066911824023728, 4307309064570490624823548890385698, 15228800547242034570505949850130312826
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k^3, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(k^3, k)); \\ Michel Marcus, Jan 10 2023

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A108131 Array read by antidiagonals: A(k,n) = C(n^k, n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 28, 84, 1, 1, 1, 120, 2925, 1820, 1, 1, 1, 496, 85320, 635376, 53130, 1, 1, 1, 2016, 2362041, 174792640, 234531275, 1947792, 1, 1, 1, 8128, 64304604, 45545029376, 782083984500, 131513824548, 85900584, 1
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2007

Keywords

Examples

			Array begins:
k.C(n^k, n)
1.|.1.1....1........1..............1...................1..........................1...
2.|.1.1....6.......84...........1820...............53130....................1947792...
3.|.1.1...28.....2925.........635376...........234531275...............131513824548...
4.|.1.1..120....85320......174792640........782083984500...........6505247592703944...
5.|.1.1..496..2362041....45545029376....2475588476563125......306455244538856615280...
6.|.1.1.2016.64304604.11710951848960.7756055513916018750.14320984850603177651837856...
		

Crossrefs

Cf. A014062 (row 2), A107444 (row 3), A107446 (row 4).
Cf. A006516 (col 2), A026809 (col 3).

Programs

  • Magma
    C:= func< n | Binomial(n^6, n) >; [ C(n) : n in [0..7]]; /* Row 6 example */

A227053 a(n) = (n^3)! / (n^3-n)! = number of ways of placing n labeled balls into n^3 labeled boxes with at most one ball in each box.

Original entry on oeis.org

1, 1, 56, 17550, 15249024, 28143753000, 94689953674560, 525169893772283760, 4469844204191484518400, 55337211594165488805417600, 955860613004397508326213120000, 22282564877342299983672172489536000, 682182070950002359574696677978908672000, 26812831292465310201469047550286967518976000
Offset: 0

Views

Author

Alex Ratushnyak, Jun 29 2013

Keywords

Crossrefs

Programs

  • Python
    import math
    for n in range(20):
      print(math.factorial(n**3)//math.factorial(n**3-n), end=', ')

A350693 Number of b > 0 which permit n^3 to be written as a sum of powers of b in n parts. Each exponent c is an integer >= 0, n^3 = b^c_1 + b^c_2 + ... + b^c_n.

Original entry on oeis.org

3, 5, 8, 7, 10, 13, 17, 19, 12, 20, 16, 18, 18, 25, 25, 21, 14, 28, 31, 34, 19, 22, 29, 34, 28, 33, 29, 38, 19, 33, 30, 31, 34, 51, 44, 30, 20, 41, 38, 44, 18, 37, 42, 52, 27, 30, 37, 59, 39, 50, 28, 35, 37, 82, 64, 44, 19, 36, 27, 36, 27, 52, 85, 65, 35, 40, 29
Offset: 2

Views

Author

Thomas Scheuerle, Jan 12 2022

Keywords

Comments

If n^3 is written in different number bases, a(n) is an upper limit for the count of number bases which allow n^3 to be written as a base-b number with a digit sum of n (generalized Dudeney numbers).
a(n) has an upper limit in the number of divisors of n^3-n. Let d be one of these divisors, then it appears that a lower limit can be found by excluding all divisors d where d+1 does not share all its prime divisors with binomial(n^3, n) (A107444).

Examples

			a(2) = 3 because 2^3 = 2^2 + 2^2 = 4^1 + 4^1 = 7^1 + 7^0.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(d=2, n^3, s=sumdigits(n^3, d); s<=n&&(n-s)%(d-1)==0); \\ Jinyuan Wang, Jan 15 2022

Formula

a(n) <= A000005(n^3-n). Conjectured to become a(n) = A000005(n^3-n), if the definition would permit negative values for b and only the absolute value of the sum needs to be equal to n^3.

Extensions

More terms from Jinyuan Wang, Jan 15 2022
Showing 1-4 of 4 results.