cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107964 a(n) = A107712(n) - A002110(n).

Original entry on oeis.org

0, 1, 29, 971, 45979, 2798423, 247080797, 25626335843, 3359804735327, 525737696543051, 86239141244378363, 16043263182247602671, 3203015846871245149541, 765364544195714620296857
Offset: 0

Views

Author

Leroy Quet, Jun 12 2005

Keywords

Comments

n-th term is coprime to first (2n) primes.

Crossrefs

Programs

  • Mathematica
    f[n_] := Product[Prime[k + n], {k, n}] - Product[Prime[k], {k, n}]; Table[ f[n], {n, 0, 14}] (* Robert G. Wilson v, Jun 14 2005 *)

Extensions

More terms from Robert G. Wilson v, Jun 14 2005

A096334 Triangle read by rows: T(n,k) = prime(n)#/prime(k)#, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 30, 15, 5, 1, 210, 105, 35, 7, 1, 2310, 1155, 385, 77, 11, 1, 30030, 15015, 5005, 1001, 143, 13, 1, 510510, 255255, 85085, 17017, 2431, 221, 17, 1, 9699690, 4849845, 1616615, 323323, 46189, 4199, 323, 19, 1, 223092870, 111546435, 37182145, 7436429, 1062347, 96577, 7429, 437, 23, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

T(n,k) is the (k+1)-th product of (n-k) successive primes (k, n-(k+1) >= 0). - Alois P. Heinz, Jan 21 2022

Examples

			Triangle begins:
    1;
    2,   1;
    6,   3,  1;
   30,  15,  5, 1;
  210, 105, 35, 7, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A002110, A070826.
T(2n,n) gives A107712.
Row sums give A350895.
Antidiagonal sums give A350758.
Cf. A073485 (distinct values sorted).

Programs

  • Maple
    T:= proc(n, k) option remember;
         `if`(n=k, 1, T(n-1, k)*ithprime(n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    T[n_, k_] := Times @@ Prime[Range[k + 1, n]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2021 *)
  • PARI
    pr(n) = factorback(primes(n)); \\ A002110
    row(n) = my(P=pr(n)); vector(n+1, k, P/pr(k-1)); \\ Michel Marcus, Jan 21 2022

Formula

T(n,0) = A002110(n); T(n,n) = 1;
T(n,n-1) = A000040(n) for n>0;
T(n,k) = A002110(n)/A002110(k), 0<=k<=n.
T(n,k) = Product_{j=k+1..n} prime(j). - Alois P. Heinz, Jan 21 2022

A093433 a(n) = (p(1)*...*p(n)) + (p(n+1)*...*p(2n)) where p(n) is the n-th prime.

Original entry on oeis.org

2, 5, 41, 1031, 46399, 2803043, 247140857, 25627356863, 3359824134707, 525738142728791, 86239154183764823, 16043263583368582931, 3203015861712721419161, 765364544804215147351277, 196164712685969109811322179, 51407675872783850510756055649
Offset: 0

Views

Author

Jason Earls, May 12 2004

Keywords

Examples

			a(5) = 2803043 because 2*3*5*7*11 + 13*17*19*23*29 = 2803043.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(mul(ithprime(i+j), i=1..n), j=[0, n]):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 13 2024

Formula

a(n) = A002110(n) + A107712(n).

A109315 Numbers n such that prime(n) - n is a prime power.

Original entry on oeis.org

12, 15, 38, 39, 118, 152, 190, 258, 462, 690, 746, 1396, 1632, 2119, 3370, 4522, 4600, 7520, 15006, 24222, 33156, 34038, 51372, 52342, 64638, 77470, 90790, 101946, 104670, 156772, 166822, 167700, 175818, 194092, 200022, 229630, 246208, 328462, 362440, 372882
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, May 22 2005

Keywords

Examples

			690 is OK because prime(690)-690 = 5179-690 = 4489 = 67^2, 67 is prime.
		

Crossrefs

Cf. A025475 = powers of a prime but not prime, also nonprime n such that sigma(n)*phi(n)>(n-1)2; A107712 = values of q, A107713 = values of k; A107714 = values of prime(A109315(n)).
Cf. A083240.

Programs

  • Mathematica
    lst = {}; fQ[n_] := Block[{pf=FactorInteger[n]}, (2-Length[pf])(pf[[1, 2]]-1) > 0]; Do[ If[ fQ[Prime[n] - n], Print[n]; AppendTo[lst, n]], {n, 3, 362439}]; lst

Formula

prime(n) - n = q^k, q is prime and k_Integer >= 2.
Showing 1-4 of 4 results.