A103314 Total number of subsets of the n-th roots of 1 that add to zero.
1, 1, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 100, 2, 130, 38, 256, 2, 1000, 2, 1156, 134, 2050, 2, 10000, 32, 8194, 512, 16900, 2, 146854, 2, 65536, 2054, 131074, 158, 1000000, 2, 524290, 8198, 1336336, 2, 11680390, 2, 4202500, 54872, 8388610, 2, 100000000, 128
Offset: 0
A110981 a(n) = the number of aperiodic subsets S of the n-th roots of 1 with zero sum (i.e., there is no r different from 1 such that r*S=S).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 6, 0, 0, 0, 236, 0, 0, 0, 18, 0, 3768, 0, 0, 0, 0, 0, 20384, 0, 0, 0, 7188, 0, 227784, 0, 186, 480, 0, 0, 1732448, 0, 237600, 0, 630, 0, 16028160, 0, 306684, 0, 0, 0, 341521732, 0, 0, 4896, 0, 0, 1417919208
Offset: 1
Keywords
Comments
We count these subsets only modulo rotations (multiplication by a nontrivial root of unity).
A103314(n) = a(n)*n + 2^n - A001037(n)*n. Note that as soon as a(n)=0, we have simply A103314(n) = 2^n - A001037(n)*n. This makes it especially interesting to study those n for which a(n)=0. Quite surprisingly, it appears that the sequence of such n coincides with A102466.
From Max Alekseyev, Jan 31 2008: (Start)
Every subset of the set U(n) = { 1=r^0, r^1, ..., r^(n-1) } of the n-th power roots of 1 (where r is a fixed primitive root) defines a binary word w of the length n where the j-th bit is 1 iff the root r^j is included in the subset.
If d is the period of w with respect to cyclic rotations (thus d|n) then the periodic part of w uniquely defines some binary Lyndon word of the length d (see A001037). In turn, each binary Lyndon word of the length d, where d
The binary Lyndon words of the length n are different in this respect: only some of them correspond to n distinct zero-sum subsets of U(n) while the others do not correspond to such subsets at all. A110981(n) gives the number of binary Lyndon words of the length n that correspond to zero-sum subsets of U(n). (End)
Links
- Max Alekseyev and M. F. Hasler, Table of n, a(n) for n = 1..164
Formula
Extensions
Additional comments from M. F. Hasler, Jan 31 2008
A135767 sigma_0(n)-omega(n)-Omega(n) (sigma_0 = A000005 = # divisors, omega = A001221 = # prime factors, Omega = A001222 = # prime factors with multiplicity).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 5, 0, 0, 1, 1, 0, 2, 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 5, 0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 2, 0, 2, 2
Offset: 1
Comments
A102467 = { n | a(n)>0 } ; A102466 = { n | a(n)=0 } = { n | omega(n)=1 or Omega(n)=2 }: these are exactly the prime powers (>1) and semiprimes. For all other numbers a(n) > 0 since for each of the Omega(n) prime power divisors, other divisors are obtained by multiplying it with another prime factor, which gives more than omega(n) different additional divisors. a(n)>0 is also equivalent to A001037(n) > A107847(n), i.e. there are strictly fewer nonzero sums of non-periodic subsets of U_n (n-th roots of unity) than there are non-periodic binary words of length n. Otherwise stated, a(n)>0 if there is a non-periodic subset of U_n with zero sum. Non-periodic means having no rotational symmetry (except for identity).
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSigma[0, n] - PrimeOmega[n] - PrimeNu[n]; Array[a, 105] (* Jean-François Alcover, Jun 21 2018 *)
-
PARI
A135767(n)=numdiv(n)-omega(n)-bigomega(n)
Comments
Links
Crossrefs
Programs
Mathematica
PARI
Formula
Extensions