cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107857 a(n) = floor[(phi + n mod 2)*a(n-1)], a(1)=1.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799, 2091, 3383, 8856, 14329, 37513, 60697, 158906, 257115, 673135, 1089155, 2851444, 4613733, 12078909, 19544085, 51167078, 82790071, 216747219, 350704367, 918155952, 1485607537, 3889371025
Offset: 1

Views

Author

Roger L. Bagula, Jun 12 2005

Keywords

Comments

A switched sequence with alternating limits of the golden mean and its square. The sequence uses only one initial term. Note that lim_{n->oo} a(n)/a(n-1) does not exist.
The consecutive pairs (2,3), (7,11), (28,45) occur as pairs in columns 2 and 3 of the Wythoff array, A035513. Suppose (l(n)) and (u(n)) are the lower and upper Beatty sequences of positive irrational numbers rClark Kimberling, Nov 24 2010

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else Floor(((Sqrt(5)+1)/2+(n mod 2))*Self(n-1)): n in [1..35] ];
  • Mathematica
    Phi = N[(Sqrt[5] + 1)/2] F[1] = 1; F[n__] := F[n] = If[Mod[n, 2] == 0, Floor[Phi*F[n - 1]], Floor[(Phi + 1)*F[n -1]]] a = Table[F[n], {n, 1, 50}]
    LinearRecurrence[{1,4,-4,1,-1},{1,1,2,3,7},40] (* Harvey P. Dale, Mar 31 2023 *)
  • PARI
    a(n)=if(n<2,1,floor((phi+n%2)*a(n-1)))
    

Formula

G.f.: -x*(-1+3*x^2-x^3+x^4) / ( (x-1)*(x^4+4*x^2-1) ). - R. J. Mathar, Sep 11 2011
a(2n+2) = (1/2)*(Fib(3n+2) + 1), a(2n+1) = (1/2)*(Fib(3n+1) + 1).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) + a(n-4) - a(n-5). - Wesley Ivan Hurt, May 04 2025

Extensions

Edited and better name by Ralf Stephan, Nov 24 2010