A107857 a(n) = floor[(phi + n mod 2)*a(n-1)], a(1)=1.
1, 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799, 2091, 3383, 8856, 14329, 37513, 60697, 158906, 257115, 673135, 1089155, 2851444, 4613733, 12078909, 19544085, 51167078, 82790071, 216747219, 350704367, 918155952, 1485607537, 3889371025
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,1,-1).
Programs
-
Magma
[ n eq 1 select 1 else Floor(((Sqrt(5)+1)/2+(n mod 2))*Self(n-1)): n in [1..35] ];
-
Mathematica
Phi = N[(Sqrt[5] + 1)/2] F[1] = 1; F[n__] := F[n] = If[Mod[n, 2] == 0, Floor[Phi*F[n - 1]], Floor[(Phi + 1)*F[n -1]]] a = Table[F[n], {n, 1, 50}] LinearRecurrence[{1,4,-4,1,-1},{1,1,2,3,7},40] (* Harvey P. Dale, Mar 31 2023 *)
-
PARI
a(n)=if(n<2,1,floor((phi+n%2)*a(n-1)))
Formula
G.f.: -x*(-1+3*x^2-x^3+x^4) / ( (x-1)*(x^4+4*x^2-1) ). - R. J. Mathar, Sep 11 2011
a(2n+2) = (1/2)*(Fib(3n+2) + 1), a(2n+1) = (1/2)*(Fib(3n+1) + 1).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) + a(n-4) - a(n-5). - Wesley Ivan Hurt, May 04 2025
Extensions
Edited and better name by Ralf Stephan, Nov 24 2010
Comments
Clark Kimberling, Nov 24 2010