A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.
1, 1, 1, 3, 8, 40, 180, 1260, 8064, 72576, 604800, 6652800, 68428800, 889574400, 10897286400, 163459296000, 2324754432000, 39520825344000, 640237370572800, 12164510040883200, 221172909834240000, 4644631106519040000, 93666727314800640000
Offset: 1
Keywords
Examples
a(1)=a(2)=a(3)=1 because the corresponding graphs are trees. a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
References
- N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..450
- Niall Byrnes, Gary R. W. Greaves, and Matthew R. Foreman, Bootstrapping cascaded random matrix models: correlations in permutations of matrix products, arXiv:2405.02541 [math-ph], 2024. See p. 7.
- Pierre-Alain Sallard, Coefficients of repeated integrals of hyperbolic cosine.
Programs
-
GAP
List([1..20],n->Factorial(n-1)/Int((n+1)/2)); # Muniru A Asiru, Dec 15 2018
-
Magma
[Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // Vincenzo Librandi, Dec 15 2018
-
Maple
a:=n->(n-1)!/floor((n+1)/2);
-
Mathematica
Function[x, 1/x] /@ CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* Pierre-Alain Sallard, Dec 15 2018 *) Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* Vincenzo Librandi, Dec 15 2018 *)
-
PARI
A107991(n)=(n-1)!/round(n/2) \\ M. F. Hasler, Apr 21 2015
-
SageMath
[factorial(n-1)/floor((n+1)/2) for n in range(1,24)] # Stefano Spezia, May 10 2024
Formula
a(n) = (n-1)!/floor((n+1)/2).
a(n+1) = n!/floor(n/2 + 1). - M. F. Hasler, Apr 21 2015
1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - Pierre-Alain Sallard, Dec 15 2018
Sum_{n>=1} 1/a(n) = (e + sinh(1))/2 + cosh(1). - Amiram Eldar, Aug 15 2025
Comments