cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.

Original entry on oeis.org

1, 1, 1, 3, 8, 40, 180, 1260, 8064, 72576, 604800, 6652800, 68428800, 889574400, 10897286400, 163459296000, 2324754432000, 39520825344000, 640237370572800, 12164510040883200, 221172909834240000, 4644631106519040000, 93666727314800640000
Offset: 1

Views

Author

Roland Bacher, Jun 13 2005

Keywords

Comments

Proof of the formula: check that the associated combinatorial Laplacian has eigenvalues {0,..n-1}\ {floor((n+1)/2)} by exhibiting a basis of eigenvectors (which are very simple).

Examples

			a(1)=a(2)=a(3)=1 because the corresponding graphs are trees.
a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
		

References

  • N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).

Crossrefs

Programs

  • GAP
    List([1..20],n->Factorial(n-1)/Int((n+1)/2)); # Muniru A Asiru, Dec 15 2018
    
  • Magma
    [Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // Vincenzo Librandi, Dec 15 2018
    
  • Maple
    a:=n->(n-1)!/floor((n+1)/2);
  • Mathematica
    Function[x, 1/x] /@
    CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* Pierre-Alain Sallard, Dec 15 2018 *)
    Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* Vincenzo Librandi, Dec 15 2018 *)
  • PARI
    A107991(n)=(n-1)!/round(n/2) \\ M. F. Hasler, Apr 21 2015
    
  • SageMath
    [factorial(n-1)/floor((n+1)/2) for n in range(1,24)] # Stefano Spezia, May 10 2024

Formula

a(n) = (n-1)!/floor((n+1)/2).
a(n+1) = n!/floor(n/2 + 1). - M. F. Hasler, Apr 21 2015
1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - Pierre-Alain Sallard, Dec 15 2018
Sum_{n>=1} 1/a(n) = (e + sinh(1))/2 + cosh(1). - Amiram Eldar, Aug 15 2025