cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107998 Squarefree integers m for which the fundamental unit of Q(sqrt(m)) is of the form u + v*sqrt(m) for integer u, v.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 14, 15, 17, 19, 22, 23, 26, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 55, 57, 58, 59, 62, 65, 66, 67, 70, 71, 73, 74, 78, 79, 82, 83, 86, 87, 89, 91, 94, 95, 97, 101, 102, 103, 105, 106, 107, 110, 111, 113, 114, 115, 118, 119, 122, 123, 127
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • H. C. Williams, Eisenstein's problem and continued fractions, Utilitas Math. 37 (1990) 145-157.

Crossrefs

Cf. A107997.

Programs

  • Mathematica
    Select[ Range[2, 127], (fu = NumberFieldFundamentalUnits @ Sqrt[#]; SquareFreeQ[#] && IntegerQ[fu[[1, 2, 1]] ] && IntegerQ[fu[[1, 2, 2]] ]) &] (* Jean-François Alcover, Jun 20 2013 *)

A108160 Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

Original entry on oeis.org

37, 101, 141, 197, 269, 349, 373, 381, 389, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 933, 973, 997, 1149, 1157, 1173, 1213, 1293, 1301, 1389, 1405, 1605, 1613, 1717, 1757, 1765, 1861, 1885, 1893, 1901, 1909, 1949, 1973, 2069, 2077, 2093
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.

Crossrefs

Extensions

More terms from Jinyuan Wang, Sep 08 2021

A283395 Squarefree numbers m congruent to 1 modulo 4 such that the fundamental unit of the field Q(sqrt(m)) has the form x+y*sqrt(m) with x, y integers.

Original entry on oeis.org

17, 33, 37, 41, 57, 65, 73, 89, 97, 101, 105, 113, 129, 137, 141, 145, 161, 177, 185, 193, 197, 201, 209, 217, 233, 241, 249, 257, 265, 269, 273, 281, 305, 313, 321, 329, 337, 345, 349, 353, 373, 377, 381, 385, 389, 393, 401, 409, 417, 433, 449, 457, 465, 473, 481, 485, 489, 497, 505, 521, 537, 545, 553, 557, 561, 569, 573
Offset: 1

Views

Author

Emmanuel Vantieghem, Mar 07 2017

Keywords

Comments

Squarefree integers m congruent to 1 modulo 4 such that the minimal solution of the Pell equation x^2 - d*y^2 = +-4 has both x and y even.
The sequence contains the squarefree numbers congruent to 5 modulo 8 that are not in A107997.
This sequence union A107997 = A039955.
This sequence contains all numbers of the form 4*k^2+1 (k > 1) that are squarefree.

Examples

			33 is in the sequence since the fundamental unit of the field Q(sqrt(33)) is 23+4*sqrt(33).
53 is not in the sequence since the fundamental unit of the field Q(sqrt(53)) is 3+omega, where omega = (1+sqrt(53))/2.
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

A361381 In continued fraction convergents of sqrt(d), where d=A005117(n) (squarefree numbers), the position of a/b where abs(a^2 - d*b^2) = 1 or 4.

Original entry on oeis.org

2, 4, 1, 2, 1, 4, 2, 1, 6, 2, 6, 4, 1, 1, 2, 8, 4, 4, 2, 1, 2, 2, 3, 2, 10, 12, 4, 2, 1, 4, 6, 7, 6, 3, 4, 1, 2, 10, 2, 6, 8, 7, 5, 2, 4, 4, 1, 2, 1, 10, 2, 5, 8, 4, 16, 4, 11, 1, 2, 12, 2, 9, 6, 5, 2, 6, 9, 6, 10, 10, 4, 1, 2, 12, 10, 3, 6, 4, 14, 9, 4, 18, 4, 4, 2, 1, 2, 3, 20, 10, 4, 5, 8, 10, 10, 18, 2, 22
Offset: 5

Views

Author

Ed Pegg Jr, Mar 09 2023

Keywords

Comments

The golden ratio is the fundamental unit for sqrt(5), but 1/1 isn't a convergent, so this sequence starts with squarefree number A005117(5)=6.

Examples

			A005117(13)=19. 170^2 - 19*39^2 = 1. The 6th convergent of sqrt(19) is 170/39.
A005117(14)=21. 5^2   - 21*1^2 =  4. The 2nd convergent of sqrt(21) is 5/1.
A005117(15)=22. 197^2 - 22*42^2 = 1. The 6th convergent of sqrt(22) is 197/42.
A005117(16)=23. 24^2  - 23*5^2 =  1. The 4th convergent of sqrt(23) is 24/5.
Corresponding fundamental units are 170+39*sqrt(19), 5+sqrt(21), 197+42*sqrt(22) and 24+5*sqrt(23).
		

Crossrefs

Programs

  • Maple
    f:= proc(x) local CF, k,v,w;
      uses NumberTheory;
      CF:= ContinuedFraction(sqrt(x));
      for k from 0 do
        v:= Convergent(CF,k);
        w:= abs(numer(v)^2 - x*denom(v)^2);
        if w = 1 or w = 4 then return k+1 fi;
      od
    end proc:
    count:= 0: R:= NULL:
    for i from 6 while count < 100 do if NumberTheory:-IsSquareFree(i) then R:= R, f(i); count:= count+1 fi
    od:
    R; # Robert Israel, Mar 12 2023
  • Mathematica
    (* store A005117 and A107997 first *) Flatten[Table[sqr = Sqrt[A005117[[n]]];
    fun = RootReduce[NumberFieldFundamentalUnits[Sqrt[A005117[[n]]]]][[1]];
    forcon = If[MemberQ[A107997, A005117[[n]]], RootReduce[2 fun], fun];
    converge = Convergents[ContinuedFraction[N[sqr, 140]]];
    Flatten[Position[converge, Abs[forcon[[1]]/(forcon[[2]]/ sqr)]]], {n, 4, 101}]]
Showing 1-4 of 4 results.