A108019 a(n) = (8^n - 1)*4/7.
0, 4, 36, 292, 2340, 18724, 149796, 1198372, 9586980, 76695844, 613566756, 4908534052, 39268272420, 314146179364, 2513169434916, 20105355479332, 160842843834660, 1286742750677284, 10293942005418276, 82351536043346212
Offset: 0
Examples
a(3)=292 because 292 translated in base 2 is three times 100: 100100100. From _Zerinvary Lajos_, Jan 14 2007: (Start) Octal............Decimal 0......................0 4......................4 44....................36 444..................292 4444................2340 44444..............18724 444444............149796 4444444..........1198372 44444444.........9586980 444444444.......76695844 4444444444.....613566756, etc. (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-8).
Crossrefs
Cf. A020988.
Programs
-
Mathematica
Table[ FromDigits[ Flatten[ Table[{1, 0, 0}, {i, n}]], 2], {n, 0, 19}] (* Robert G. Wilson v, Jun 01 2005 *) s=0;lst={s};Do[s+=2^n;AppendTo[lst, s], {n, 2, 5!, 3}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *) NestList[8#+4&,0,20] (* Harvey P. Dale, Aug 08 2013 *)
-
PARI
a(n)=if(n<0, 0,(8^n-1)*4/7) /* Michael Somos */
Formula
a(n) = 8*a(n-1) + 4 with n>0, a(0)=0. - Vincenzo Librandi, Nov 13 2010
From Colin Barker, Oct 15 2012: (Start)
a(n) = 9*a(n-1) - 8*a(n-2).
G.f.: 4*x/((x-1)*(8*x-1)). (End)
Extensions
More terms from Robert G. Wilson v, Jun 01 2005
Comments