A108081 a(n) = Sum_{i=0..n} binomial(2*n-i, n+i).
1, 2, 7, 25, 92, 344, 1300, 4950, 18955, 72905, 281403, 1089343, 4227273, 16438345, 64037453, 249855417, 976205516, 3818779616, 14954876080, 58623077586, 230007291334, 903164858092, 3549071519462, 13955918890440, 54912972103772, 216194101316654, 851622127750060
Offset: 0
Keywords
Links
- G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000(terms 0..200 from Vincenzo Librandi)
Programs
-
Mathematica
CoefficientList[Series[(1+Sqrt[1-4*x])/(2*Sqrt[1-4*x]*(x+Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *) Table[Sum[Binomial[2n-i,n+i],{i,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 20 2013 *)
-
PARI
my(x='x+O('x^66)); Vec((1+sqrt(1-4*x))/(2*sqrt(1-4*x)*(x+sqrt(1-4*x)))) \\ Joerg Arndt, May 15 2013
-
PARI
a(n) = sum(k=0,n, binomial(n+k-1,k)*fibonacci(n-k+1)); \\ G. C. Greubel, Jan 31 2017
Formula
G.f.: 1/2*(1-5*x+4*x^2+((1-4*x)*(1-5*x)^2)^(1/2))/(1-4*x)/(1-4*x-x^2). - Vladeta Jovovic, Sep 06 2006
G.f.: (1+sqrt(1-4*x))/(2*sqrt(1-4*x)*(x+sqrt(1-4*x))). - Paul Barry, Sep 28 2007
a(n) = Sum_{k=0..n} C(n+k-1,k)*F(n-k+1). - Paul Barry, Sep 28 2007
Recurrence: n*(n+1)*a(n) = 2*(4*n^2 + 3*n - 6)*a(n-1) - (15*n^2 + 7*n - 48)*a(n-2) - 2*(n+2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 17 2012
a(n) = [x^n] 1/((1-x-x^2) * (1-x)^n). - Seiichi Manyama, Apr 05 2024
Comments