cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108081 a(n) = Sum_{i=0..n} binomial(2*n-i, n+i).

Original entry on oeis.org

1, 2, 7, 25, 92, 344, 1300, 4950, 18955, 72905, 281403, 1089343, 4227273, 16438345, 64037453, 249855417, 976205516, 3818779616, 14954876080, 58623077586, 230007291334, 903164858092, 3549071519462, 13955918890440, 54912972103772, 216194101316654, 851622127750060
Offset: 0

Views

Author

Ralf Stephan, Jun 03 2005

Keywords

Comments

A transform of the Fibonacci numbers A000045(n+1) under the mapping g(x)->(1/(c(x)*sqrt(1-4*x)))*g(x*c(x)), c(x) the g.f. of A000108. Hankel transform is the bisection of the Fibonacci numbers F(2*n+2) (A001906(n+1)). - Paul Barry, Sep 28 2007
Diagonal sums of A159965. - Paul Barry, Apr 28 2009
Comment from Li-yao Xia, Oct 22 2015: (Start)
Consider the smallest set X of finite sequences of integer (or words), such that
- 0 belongs to it;
- if a and b are two words in X, let L(a) be the word obtained by reversing a and subtracting 1 from every term, and R(b) be the word obtained by reversing b and adding 1 to every term; then the concatenations L(a).b and a.R(b) belong to X.
Examples of L and R values: L(10,30,20) = 19, 29, 9; R(10,30,20) = 21, 31, 11
List of words of X of lengths 1, 2, 3:
0
0, 1
-1, 0
-1, 0, 1 = L(0), 0, 1 = -1, 0, R(0)
0, 2, 1 = 0, R(0, 1)
1, -1, 0 = L(0), -1, 0
0, 1, 0 = 0, R(-1, 0)
0, -1, 0 = L(0, 1), 0
0, 1, 1 = 0, 1, R(0)
-1, -2, 0 = L(-1, 0), 0
The number of words of length n for n<=12 is given by a(n+1). Is this always true? (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+Sqrt[1-4*x])/(2*Sqrt[1-4*x]*(x+Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    Table[Sum[Binomial[2n-i,n+i],{i,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 20 2013 *)
  • PARI
    my(x='x+O('x^66)); Vec((1+sqrt(1-4*x))/(2*sqrt(1-4*x)*(x+sqrt(1-4*x)))) \\ Joerg Arndt, May 15 2013
    
  • PARI
    a(n) = sum(k=0,n, binomial(n+k-1,k)*fibonacci(n-k+1)); \\ G. C. Greubel, Jan 31 2017

Formula

G.f.: 1/2*(1-5*x+4*x^2+((1-4*x)*(1-5*x)^2)^(1/2))/(1-4*x)/(1-4*x-x^2). - Vladeta Jovovic, Sep 06 2006
G.f.: (1+sqrt(1-4*x))/(2*sqrt(1-4*x)*(x+sqrt(1-4*x))). - Paul Barry, Sep 28 2007
a(n) = Sum_{k=0..n} C(n+k-1,k)*F(n-k+1). - Paul Barry, Sep 28 2007
Recurrence: n*(n+1)*a(n) = 2*(4*n^2 + 3*n - 6)*a(n-1) - (15*n^2 + 7*n - 48)*a(n-2) - 2*(n+2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 17 2012
a(n) = [x^n] 1/((1-x-x^2) * (1-x)^n). - Seiichi Manyama, Apr 05 2024