A108099 a(n) = 8*n^2 + 8*n + 4.
4, 20, 52, 100, 164, 244, 340, 452, 580, 724, 884, 1060, 1252, 1460, 1684, 1924, 2180, 2452, 2740, 3044, 3364, 3700, 4052, 4420, 4804, 5204, 5620, 6052, 6500, 6964, 7444, 7940, 8452, 8980, 9524, 10084, 10660, 11252, 11860, 12484, 13124, 13780, 14452, 15140, 15844
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Adrian Rossiter, Antiprism.
- Steve Waterman, Polyhedra Project.
- Steve Waterman, Waterman's Polyhedral Mensuration chart.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ 8*n^2 + 8*n + 4 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
A108099:=n->8*n^2 + 8*n + 4; seq(A108099(n), n=0..50); # Wesley Ivan Hurt, Jun 09 2014
-
Mathematica
CoefficientList[Series[-(4*(z^2 + 2*z + 1))/(z - 1)^3, {z, 0, 100}], z] (* and *) Table[8*n*(n + 1) + 4, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)
-
PARI
a(n)=8*n^2+8*n+4 \\ Charles R Greathouse IV, Jul 17 2011
Formula
a(n) = 8*n^2 + 8*n + 4.
G.f.: 4*(1+2*x+x^2)/(1-x)^3.
a(n) = 16*n + a(n-1), a(0)=4. - Vincenzo Librandi, Nov 13 2010
a(n) = A069129(n+1) + 3. - Omar E. Pol, Sep 04 2011
a(n) = A035008(n) + 4. - Omar E. Pol, Jun 12 2014
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 4*(1 + 4*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments