cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108099 a(n) = 8*n^2 + 8*n + 4.

Original entry on oeis.org

4, 20, 52, 100, 164, 244, 340, 452, 580, 724, 884, 1060, 1252, 1460, 1684, 1924, 2180, 2452, 2740, 3044, 3364, 3700, 4052, 4420, 4804, 5204, 5620, 6052, 6500, 6964, 7444, 7940, 8452, 8980, 9524, 10084, 10660, 11252, 11860, 12484, 13124, 13780, 14452, 15140, 15844
Offset: 0

Views

Author

Dorthe Roel (dorthe_roel(AT)hotmail.com or dorthe.roel1(AT)skolekom.dk), Jun 07 2005

Keywords

Comments

Also the number for Waterman [polyhedra] have a unit rhombic dodecahedron face so sqrt 4, sqrt 20, sqrt 52, etc...and a one-to-one match...that is, no omissions and no extras. - Steve Waterman and Roger Kaufman (swaterman(AT)watermanpolyhedron.com), Apr 02 2009. [This sentence makes no sense - some words must have been dropped. - N. J. A. Sloane, Jun 12 2014]
Also, sequence found by reading the segment (4,20) together with the line from 20, in the direction 20, 52, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 04 2011
Sum of consecutive even squares: (2*n)^2 + (2*n + 2)^2 = 8*n^2 + 8*n + 4. - Michel Marcus, Jan 27 2014

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 8*n + 4.
G.f.: 4*(1+2*x+x^2)/(1-x)^3.
a(n) = 16*n + a(n-1), a(0)=4. - Vincenzo Librandi, Nov 13 2010
a(n) = A069129(n+1) + 3. - Omar E. Pol, Sep 04 2011
a(n) = A035008(n) + 4. - Omar E. Pol, Jun 12 2014
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 4*(1 + 4*x + 2*x^2)*exp(x).
a(n) = 4*A001844(n) = 2*A069894(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)