cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A142704 A generalized factorial level recursion of a Padovan type: a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k=2.

Original entry on oeis.org

0, 1, 1, 6, 16, 70, 264, 1204, 5344, 26424, 130960, 698896, 3777216, 21576256, 125331136, 760604160, 4701036544, 30121800064, 196619065344, 1323267791104, 9069634616320, 63835247970816, 457287705926656
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2008

Keywords

Crossrefs

Cf. A171386 (k=0), A108189 (k=1), A002467 (Game of Mousetrap), A000931 (Padovan).

Programs

  • Maple
    A142704 := proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n =2 then 1 elif n>=3 then 2*n*(procname(n-2) + procname(n-3)) fi: end: seq(A142704(n), n=0..22); # Johannes W. Meijer, Jul 27 2011
  • Mathematica
    Clear[a, b, n, k]; k = 2; b[0] = 0; b[n_] := b[n] = b[n - 1] + k; a[0] = 0; a[1] = 1; a[2] = 2; a[n_] := a[n] = b[n]*(a[n - 2] + a[n - 3]); Table[a[n], {n, 0, 22}]
    FullSimplify[CoefficientList[Series[Pi/(4*Sqrt[2])*E^(x^2/2)*x *Sqrt[1+x] *(BesselI[-1/4,1/2*(1+x)^2]*(2*BesselI[-3/4,1/2] - BesselI[1/4,1/2]) + BesselI[1/4,1/2*(1+x)^2]*(BesselI[-1/4,1/2] - 2*BesselI[3/4,1/2])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2012 *)

Formula

a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k = 2.
a(n) = 2*n*(a(n-2) + a(n-3)) with a(0) = 0, a(1) = a(2) = 1. - Johannes W. Meijer, Jul 27 2011
From Vaclav Kotesovec, Dec 28 2012: (Start)
E.g.f.: (Pi/(4*sqrt(2)))*exp(x^2/2)*x*sqrt(1+x)*(BesselI(-1/4,1/2*(1+x)^2)*(2*BesselI(-3/4,1/2)-BesselI(1/4,1/2))+BesselI(1/4,1/2*(1+x)^2)*(BesselI(-1/4,1/2)-2*BesselI(3/4,1/2))).
a(n) ~ (sqrt(Pi)/8) * (2*BesselI(-3/4,1/2) - 2*BesselI(3/4,1/2) + BesselI(-1/4,1/2) - BesselI(1/4,1/2)) * 2^(n/2-1/4)*exp(sqrt(n)/sqrt(2)-n/2+3/8)*n^(n/2+1/4) * (1-47/(48*sqrt(2*n))). (End)

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011

A168150 Inverse binomial transform of A026741.

Original entry on oeis.org

0, 1, -1, 3, -8, 20, -48, 112, -256, 576, -1280, 2816, -6144, 13312, -28672, 61440, -131072, 278528, -589824, 1245184, -2621440, 5505024, -11534336, 24117248, -50331648, 104857600, -218103808, 452984832, -939524096, 1946157056, -4026531840, 8321499136, -17179869184
Offset: 0

Views

Author

Paul Curtz, Nov 19 2009

Keywords

Crossrefs

Programs

  • Magma
    [0,1] cat [(-2)^(n-3)*n: n in [2..35]]; // Vincenzo Librandi, Jul 15 2016
  • Mathematica
    Join[{0, 1, -1, 3}, LinearRecurrence[{-4, -4}, {-8, 20}, 50]] (* G. C. Greubel, Jul 14 2016 *)
    CoefficientList[Series[x (1 + 3 x + 3 x^2) / (1 + 2 x)^2, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 15 2016 *)
  • PARI
    a(n)=(-2)^if(n>1,n-3)*n  \\ M. F. Hasler, Jan 25 2012
    

Formula

a(n+2) = (-1)^(n+1) * A001792(n).
From R. J. Mathar, Nov 23 2009: (Start)
a(n) = -4*a(n-1) -4*a(n-2) = (-2)^(n-3)*n, n>3.
G.f.: x*(1 + 3*x + 3*x^2)/(1 + 2*x)^2. (End)

Extensions

Comments turned into formulas, out-of-scope material moved to A026741 by R. J. Mathar, Nov 23 2009
Showing 1-2 of 2 results.