1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 1, 3, 0, 6, 1, 2, 1, 7, 1, 4, 2, 8, 1, 1, 3, 9, 1, 5, 4, 1, 1, 3, 5, 0, 1, 6, 6, 1, 1, 2, 7, 1, 1, 7, 8, 1, 1, 4, 9, 2, 2, 8, 0, 1, 2, 1, 1, 3, 2, 9, 2, 1, 2, 5, 3, 4, 2, 1, 4, 1, 2, 3, 5, 5, 2, 0, 6, 1, 2, 6, 7, 6, 2, 1, 8, 1, 2, 2, 9, 7, 3, 1, 0, 1, 3, 7, 1
Offset: 1
Say "1" and erase the first "1", then say "2" and erase the first "2" (leaving all other digits where they are), then say "3" and erase the first "3", etc. When it comes to "10" erase the first "1" and then the closest "0", etc. The digits to erase when the count comes to "16", for example, are next to one another. [If we apply to the sequence the process described here, the result is a different sequence, b. To get a match with the first 76 terms, we take "first" to mean "next (after the most recent erasure)". Nevertheless, we find a(76), ..., a(80) = 1,4,1,2,3; b(76), ..., b(80) = 1,1,2,4,3. - _Kevin Ryde_ and _Peter Munn_, Nov 21 2020]
From _Peter Munn_, Nov 21 2020: (Start)
Start of table showing the interleaving with the almost-natural numbers, A007376:
n a(n) A007376 a(n/2)
((n+1)/2)
1 1 1
2 1 1
3 2 2
4 1 1
5 3 3
6 2 2
7 4 4
8 1 1
9 5 5
10 3 3
11 6 6
12 2 2
13 7 7
14 4 4
15 8 8
16 1 1
17 9 9
18 5 5
19 1 1
20 3 3
21 0 0
(End)
Comments