cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A202952 A108235(n)-A202951(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 11, 0, 0, 2300
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Crossrefs

A284737 A condensed version of A108235.

Original entry on oeis.org

1, 1, 8, 21, 3040, 20505, 10567748, 103372655
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2017

Keywords

Comments

Lists only the terms A108235(n) for n == 0 or 3 mod 12.
See A108235, the main entry for this sequence, for more information.

Crossrefs

Cf. A108235.

A002849 Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n}, each satisfying X + Y = Z.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 3, 10, 25, 12, 42, 8, 40, 204, 21, 135, 1002, 4228, 720, 5134, 29546, 4079, 35533, 3040, 28777, 281504, 20505, 212283, 2352469, 16907265, 1669221, 19424213, 167977344, 14708525, 191825926, 10567748, 149151774, 2102286756, 103372655, 1534969405
Offset: 1

Views

Author

Keywords

Examples

			For n = 3, the unique solution is 1 + 2 = 3.
For n = 12, there are 8 solutions:
  1  5  6 | 1  5  6 | 2  5  7 | 1  6  7
  2  8 10 | 3  7 10 | 3  6  9 | 4  5  9
  4  7 11 | 2  9 11 | 1 10 11 | 3  8 11
  3  9 12 | 4  8 12 | 4  8 12 | 2 10 12
  --------+---------+---------+--------
  2  4  6 | 2  6  8 | 3  4  7 | 3  5  8
  1  9 10 | 4  5  9 | 1  8  9 | 2  7  9
  3  8 11 | 3  7 10 | 5  6 11 | 4  6 10
  5  7 12 | 1 11 12 | 2 10 12 | 1 11 12
		

References

  • R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    nxyz(v,t)=local(n,r,x2); r=0; if(t==0,return(1)); for(i3=3*t,#v, n=v[i3]; for(i1=1,i3-2, x2=n-v[i1]; if(x2<=v[i1],break); for(i2=i1+1,i3-1, if(v[i2]>=x2, if(v[i2]==x2, r+=nxyz(vector(i3-3,k,v[if(kFranklin T. Adams-Watters

Extensions

Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others
a(32)-a(39) from Max Alekseyev, Feb 23 2012
Definition corrected by Max Alekseyev, Nov 16 2012, Jul 06 2023
a(40)-a(41) from Fausto A. C. Cariboni, Feb 04 2017
a(42) from Fausto A. C. Cariboni, Mar 12 2017

A002848 Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n} with X + Y = Z (as in A002849), with the property that n is in one of the subsets.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 7, 15, 12, 30, 8, 32, 164, 21, 114, 867, 3226, 720, 4414, 24412, 4079, 31454, 3040, 25737, 252727, 20505, 191778, 2140186, 14554796, 1669221, 17754992, 148553131, 14708525, 177117401, 10567748, 138584026, 1953134982, 103372655, 1431596750, 22374792451, 218018425976, 16852166906, 254094892254
Offset: 0

Views

Author

Keywords

Examples

			Examples from _Alois P. Heinz_, Feb 12 2010:
A002848(7) = 3:
  [1, 3, 4], [2, 5, 7]
  [1, 5, 6], [3, 4, 7]
  [2, 3, 5], [1, 6, 7]
A002848(8) = 7:
  [1, 3, 4], [2, 6, 8]
  [1, 4, 5], [2, 6, 8]
  [1, 6, 7], [3, 5, 8]
  [2, 3, 5], [1, 7, 8]
  [2, 4, 6], [1, 7, 8]
  [2, 4, 6], [3, 5, 8]
  [3, 4, 7], [2, 6, 8]
A002848(10) = 12:
  [1, 4, 5], [2, 6, 8], [3, 7, 10]
  [1, 4, 5], [3, 6, 9], [2, 8, 10]
  [1, 5, 6], [3, 4, 7], [2, 8, 10]
  [1, 6, 7], [4, 5, 9], [2, 8, 10]
  [1, 7, 8], [2, 3, 5], [4, 6, 10]
  [1, 8, 9], [2, 3, 5], [4, 6, 10]
  [1, 8, 9], [2, 4, 6], [3, 7, 10]
  [1, 8, 9], [2, 5, 7], [4, 6, 10]
  [2, 4, 6], [3, 5, 8], [1, 9, 10]
  [2, 6, 8], [3, 4, 7], [1, 9, 10]
  [2, 6, 8], [4, 5, 9], [3, 7, 10]
  [2, 7, 9], [3, 5, 8], [4, 6, 10]
See A002849 for further examples.
		

References

  • R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
  • Richard K. Guy, The unity of combinatorics, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

For n >= 2, a(n) = A002849(n) if n == 0,3,7,10 (mod 12), otherwise a(n) = A002849(n) - A002849(n-1). - _Franklin T. Adams-Watters; corrected by Max Alekseyev, Jul 06 2023

Extensions

Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others
a(32)-a(39) from Max Alekseyev, Feb 23 2012
Definition corrected by Max Alekseyev, Nov 16 2012, Jul 06 2023
a(40)-a(42) from Fausto A. C. Cariboni, Mar 12 2017
a(43)-a(44) computed from A002849 by Max Alekseyev, Jul 06 2023

A161826 Number of maximal vertex-independent sets in the hypergraph with nodes V = {1, 2, ..., n} and "edges" consisting of the triples (X,Y,Z) with X

Original entry on oeis.org

1, 1, 3, 2, 6, 1, 6, 1, 5, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Feb 10 2010

Keywords

Comments

A subset S of V is vertex-independent if there is no edge (X,Y,Z) with X, Y, Z all in S.
Continued fraction expansion of (3452449 + 2*sqrt(2))/1943849. - Stefano Spezia, Mar 17 2024

Crossrefs

Formula

a(2k)=1, a(2k+1)=4 for k >= 5.
G.f.: x*(1 + x + 2*x^2 + x^3 + 3*x^4 - x^5 - x^8 - x^10)/((1 - x)*(1 + x)). - Stefano Spezia, Mar 17 2024

A202951 Number of Nickerson-type partitions of [1,...,3n] into triples satisfying x+y=z.

Original entry on oeis.org

1, 1, 0, 0, 6, 10, 0, 0, 700
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Comments

Perhaps an incorrect version of A004075? Sequence values are from p. 51 of Nowakowski. - Martin Fuller, Jul 06 2025

Crossrefs

A203435 Number of partitions of {1,2,...,4n} into n 4-element subsets having the same sum.

Original entry on oeis.org

1, 1, 4, 32, 392, 6883, 171088, 5661874, 242038179, 13147317481
Offset: 0

Views

Author

Alois P. Heinz, Jan 01 2012

Keywords

Comments

The element sum of each subset is 8n+2. The larger terms were computed with Knuth's dancing links algorithm.

Examples

			a(1) = 1: {1,2,3,4}.
a(2) = 4: {1,2,7,8}, {3,4,5,6}; {1,3,6,8}, {2,4,5,7}; {1,4,5,8}, {2,3,6,7}; {1,4,6,7}, {2,3,5,8}.
		

Crossrefs

Column k=4 of A203986.

Programs

  • Maple
    b:= proc() option remember; local i, j, t, m; m:= args[nargs]; if args[1]=0 then `if`(nargs=2, 1, b(args[t] $t=2..nargs)) elif args[1]<1 then 0 else add(`if`(args[j] `if`(n=0, 1, b(((8*n+2)+4/97) $n, 4*n)/n!): seq(a(n), n=0..6);
  • Mathematica
    b[l_] := b[l] = Module[{nl = Length[l], k = l[[-1]], m = l[[-2]]}, Which[l[[1]] == 0, If[nl == 3, 1, b[l[[2 ;; nl]]]], l[[1]] < 1, 0, True, Sum[If[l[[j]] < m, 0, b[Join[Sort[Table[l[[i]] - If[i == j, m + 1/97, 0], {i, 1, nl - 2}]], {m - 1, k}]]], {j, 1, nl - 2}]]];
    a[n_] := If[n == 0, 1, b[Join[Array[8*n + 2 + 4/97& , n], {4*n, 4}]]/n!];
    Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Jun 03 2018, adapted from Maple *)

A264813 Number of permutations of 3 indistinguishable copies of 1,...,n such that the first and second copies of j are adjacent and there are exactly j numbers between the second and the third copy of j.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 6, 0, 53, 199, 0, 2908, 13699, 0, 369985, 2135430, 0, 87265700, 611286653, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 25 2015

Keywords

Comments

a(n) = 0 for n == 1 (mod 3).

Examples

			a(0) = 1: the empty permutation.
a(2) = 1: 221121.
a(3) = 1: 223321131.
a(5) = 3: 223325534411514, 225523344531141, 552244253341131.
a(6) = 6: 221121665544336543, 225523366534411614, 225526633544361141, 446611415563322532, 552266253344631141, 665544336543221121.
		

Crossrefs

A202954 Number of partitions of [1,...,3n] into triples satisfying x+y=4z.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 6, 0, 5, 0, 0, 349, 0, 443, 0, 0, 110757, 0, 1254452, 0, 0, 152965479, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Comments

a(n)=0 when n is not congruent to 0 or 3 mod 5. - Edward Moody, Jan 17 2021

Crossrefs

Extensions

a(14)-a(17) from Alois P. Heinz, Dec 28 2011
a(18) from Alois P. Heinz, Jan 04 2012
a(19)-a(24) from Edward Moody, Jan 17 2021
Showing 1-9 of 9 results.