A108247 Duplicate of A108243.
1, 1, 10, 760, 190050, 103050570, 102359800620, 168076482974400
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Array begins: ================================================================= n\k | 0 1 2 3 4 5 6 7 ----+------------------------------------------------------------ 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 0 0 0 0 0 0 0 ... 2 | 1 1 1 1 1 1 1 1 ... 3 | 1 0 1 0 1 0 1 0 ... 4 | 1 3 6 10 15 21 28 36 ... 5 | 1 0 22 0 158 0 654 0 ... 6 | 1 15 130 760 3355 12043 36935 100135 ... 7 | 1 0 822 0 93708 0 3226107 0 ... 8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ... ...
MultigraphsByDegreeSeq(n, limit, ok)={ local(M=Map(Mat([0, 1]))); my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m))))); for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M); } T(n,k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p,r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[,2]))} { for(n=0, 8, for(k=0, 7, print1(T(n,k), ", ")); print) }
a(1)=1: {(1,1), (1,2), (2,2)}
max = 30; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 1; coef = CoefficientList[ 9*x^3*(x^4 - 2)*f''[x] + 3*(x^10 - 2*x^8 - 5*x^6 - 18*x^2 + 8)*f'[x] - x*(x^4 - 4*x^2 + 2)*(x^6 - 2*x^2 + 12)*f[x], x]; Table[a[n], {n, 0, max, 2}]/. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)
4th column (offset) = 10, 26, 58, 112, ...= f(x), x = 1, 2, 3; x^3 + 2x^2 + 3x + 4. First few rows of the triangle are: 1; 1, 3; 1, 4, 6; 1, 5, 11, 10; 1, 6, 18, 26, 15; 1, 7, 27, 58, 57, 21; 1, 8, 38, 112, 179, 120, 28; ...
a(2)=7 because for 2*n=4 nodes there are 7 possible labeled graphs whose adjacency matrices are as follows: 0 2 1 0 2 0 0 1 1 0 0 2 0 1 2 0; 0 1 2 0 1 0 0 2 2 0 0 1 0 2 1 0; 0 2 0 1 2 0 1 0 0 1 0 2 1 0 2 0; 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0; 0 0 2 1 0 0 1 2 2 1 0 0 1 2 0 0; 0 1 0 2 1 0 2 0 0 2 0 1 2 0 1 0; 0 0 1 2 0 0 2 1 1 2 0 0 2 1 0 0.
Comments