cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108246 Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0

Views

Author

Marni Mishna, Jun 17 2005

Keywords

Examples

			a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
		

Crossrefs

Binomial transform of A001205.
Row sums of A144161. - Alois P. Heinz, Jun 01 2009

Programs

  • Maple
    b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 12 2008
  • Mathematica
    CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

Linear recurrence satisfied by a(n): {a(2) = 1, a(0) = 1, (-n^2 - 3*n - 2)*a(n) + (4 + 2*n)*a(n+1) + (-2*n-6)*a(n+2) + 2*a(n+3), a(1) = 1}.
E.g.f.: exp(-t^2/4 + t/2)/sqrt(1-t). - Vladeta Jovovic, Aug 14 2006
a(n) ~ sqrt(2)*n^n/exp(n-1/4). - Vaclav Kotesovec, Oct 17 2012

Extensions

More terms from Alois P. Heinz, Sep 12 2008