cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053696 Numbers that can be represented as a string of three or more 1's in a base >= 2.

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 43, 57, 63, 73, 85, 91, 111, 121, 127, 133, 156, 157, 183, 211, 241, 255, 259, 273, 307, 341, 343, 364, 381, 400, 421, 463, 507, 511, 553, 585, 601, 651, 703, 757, 781, 813, 820, 871, 931, 993, 1023, 1057, 1093, 1111, 1123, 1191
Offset: 1

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

Numbers of the form (b^n-1)/(b-1) for n > 2 and b > 1. - T. D. Noe, Jun 07 2006
Numbers m that are nontrivial repunits for any base b >= 2. For k = 2 (I use k for the exponent since n is used as the index in a(n)) we get (b^k-1)/(b-1) = (b^2-1)/(b-1) = b+1, so every integer m >= 3 is a 2-digit repunit in base b = m-1. And for n = 1 (the 1-digit degenerate repunit) we get (b-1)/(b-1) = 1 for any base b >= 2. If we considered all k >= 1 we would get the sequence of all positive integers except 2 since it is the smallest uniform base used in positional representation (2 might be seen as the "repunit" in a nonpositional base representation such as the Roman numerals where 2 is expressed as II). - Daniel Forgues, Mar 01 2009
These repunits numbers belong to Brazilian numbers (A125134) (see Links: "Les nombres brésiliens" - section IV, p. 32). - Bernard Schott, Dec 18 2012
The Brazilian primes (A085104) belong to this sequence. - Bernard Schott, Dec 18 2012

Examples

			a(5) = 31 because 31 can be written as 111 base 5 (or indeed 11111 base 2).
		

Crossrefs

Cf. A090503 (a subsequence), A119598 (numbers that are repunits in four or more bases), A125134, A085104.
Cf. A108348.

Programs

  • Haskell
    a053696 n = a053696_list !! (n-1)
    a053696_list = filter ((> 1) . a088323) [2..]
    -- Reinhard Zumkeller, Jan 22 2014, Nov 26 2013
  • Maple
    N:= 10^4: # to get all terms <= N
    V:= Vector(N):
    for b from 2 while (b^3-1)/(b-1) <= N do
      inds:= [seq((b^k-1)/(b-1), k=3..ilog[b](N*(b-1)+1))];
      V[inds]:= 1;
    od:
    select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    fQ[n_] := Block[{d = Rest@ Divisors[n - 1]}, Length@ d > 2 && Length@ Select[ IntegerDigits[n, d], Union@# == {1} &] > 1]; Select[ Range@ 1200, fQ]
    lim=1000; Union[Reap[Do[n=3; While[a=(b^n-1)/(b-1); a<=lim, Sow[a]; n++], {b, 2, Floor[Sqrt[lim]]}]][[2, 1]]]
    Take[Union[Flatten[With[{l=Table[PadLeft[{},n,1],{n,3,100}]}, Table[ FromDigits[#,n]&/@l,{n,2,100}]]]],80] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,sqrt(lim),e=3;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Oct 06 2011
    
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,lim^(1/3),e=4;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(concat(Vec(v), vector((sqrtint (lim\1*4-3)-3)\2,i,i^2+3*i+3)),,8) \\ Charles R Greathouse IV, May 30 2013
    

Formula

a(n) ~ n^2 since as n grows the density of repunits of degree 2 among all the repunits tends to 1. - Daniel Forgues, Dec 09 2008
A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

A090503 Number of hyperplanes in a finite projective space (of some dimension d over some finite field of order q).

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 57, 63, 73, 85, 91, 121, 127, 133, 156, 183, 255, 273, 307, 341, 364, 381, 400, 511, 553, 585, 651, 757, 781, 820, 871, 993, 1023, 1057, 1093, 1365, 1407, 1464, 1723, 1893, 2047, 2257, 2380, 2451, 2801, 2863, 3280, 3541, 3783, 3906, 4095, 4161, 4369, 4557, 4681, 5113, 5220, 5403, 5461, 6321, 6643, 6973
Offset: 1

Views

Author

Olivier Giraud (olivier.giraud(AT)bristol.ac.uk), Feb 01 2004

Keywords

Comments

The number of tiles building the known pairs of Euclidean isospectral billiards are 7, 13, 15, 21, ... (see Refs Okada et al. and Buser et al.).
Subsequence of A053696. - Hans Havermann, Nov 21 2013

References

  • T. Tsuzuki, Finite groups and finite geometries, Cambridge University Press, 1982, p. 73.

Crossrefs

Programs

  • Haskell
    a090503 n = a090503_list !! (n-1)
    a090503_list = f [1..] where
       f (x:xs) = g $ tail a000961_list where
         g (q:pps) = h 0 $ map ((`div` (q - 1)) . subtract 1) $
                               iterate (* q) (q ^ 3) where
           h i (qy:ppys) | qy > x    = if i == 0 then f xs else g pps
                         | qy < x    = h 1 ppys
                         | otherwise = x : f xs
    -- Reinhard Zumkeller, Nov 26 2013
  • Mathematica
    isA090503[n_] := Module[{f = FactorInteger[n-1]}, For[i = 1, i <= Length[f], i++, For[j = 1, j <= f[[i, 2]], j++, q = f[[i, 1]]^j; If[q == n-1, Continue[]]; If[n*(q-1)+1 == q^IntegerExponent[n*(q-1)+1, q], Return[True]]]]; False]; Reap[For[n = 2, n <= 10^5, n++, If[isA090503[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2013, translated and adapted from Max Alekseyev's program *)
  • PARI
    isA090503(n) = my(f,q); f=factor(n-1); for(i=1,matsize(f)[1], for(j=1,f[i,2], q=f[i,1]^j; if(q==n-1,next); if( n*(q-1)+1 == q^valuation(n*(q-1)+1,q), return(q)); )); 0 /* Max Alekseyev, Nov 20 2013 */
    

Formula

Numbers of the form (q^(d+1)-1)/(q-1), d>=2, q=p^m with m>=1 and p prime.

Extensions

Missing terms provided by Jean-François Alcover and Wouter Meeussen; edited by M. F. Hasler, Nov 20 2013
PARI program and further terms in a b-file added by Max Alekseyev, Nov 20 2013
Showing 1-2 of 2 results.