cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A118343 Triangle, read by rows, where diagonals are successive self-convolutions of A108447.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A108447 equals the central terms of pendular triangle A118340 and the diagonals of this triangle form the semi-diagonals of the triangle A118340. Row sums equal A054727, the number of forests of rooted trees with n nodes on a circle without crossing edges.

Examples

			Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  4,   0;
  1, 3,  9,  20,    0;
  1, 4, 15,  48,  113,    0;
  1, 5, 22,  85,  282,  688,     0;
  1, 6, 30, 132,  519, 1762,  4404,      0;
  1, 7, 39, 190,  837, 3330, 11488,  29219,      0;
  1, 8, 49, 260, 1250, 5516, 22135,  77270, 199140,       0;
  1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
		

Crossrefs

Cf. A054727 (row sums), A108447, A118340.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021

A118342 Self-convolution cube of A108447.

Original entry on oeis.org

1, 3, 15, 85, 519, 3330, 22135, 151089, 1052805, 7458236, 53554548, 388913046, 2851368587, 21076979445, 156907929177, 1175381112901, 8853057357159, 67007699270040, 509390314298820, 3887605401119964, 29775366104932044
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^n)))/2/(1-x))/x)^3,n)}

A118341 Self-convolution square of A108447.

Original entry on oeis.org

1, 2, 9, 48, 282, 1762, 11488, 77270, 532239, 3735488, 26617976, 192061278, 1400453568, 10303466638, 76391703591, 570195719792, 4281169118106, 32312317899352, 245016567557504, 1865677590201192, 14259825593908356
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^n)))/2/(1-x))/x)^2,n)}

A364748 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 1, 6, 47, 424, 4159, 43097, 464197, 5145475, 58313310, 672598269, 7869856070, 93183973405, 1114471042413, 13443614108307, 163372291277764, 1998239045199623, 24580340878055298, 303893356012560280, 3774099648814193998, 47061518776483143441
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=1, t=5, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(5*n-4*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)

A118340 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + T(n-1,k), for n>=k>0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 5, 1, 0, 1, 5, 15, 20, 6, 1, 0, 1, 6, 22, 48, 28, 7, 1, 0, 1, 7, 30, 85, 113, 37, 8, 1, 0, 1, 8, 39, 132, 282, 169, 47, 9, 1, 0, 1, 9, 49, 190, 519, 688, 237, 58, 10, 1, 0, 1, 10, 60, 260, 837, 1762, 1074, 318, 70, 11, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2006

Keywords

Comments

Definitions. A pendular triangle is a triangle in which row n is generated from the pendular sums of row n-1. Pendular sums of a row are partial sums taken in back-and-forth order, starting with the leftmost term, jumping to the rightmost term, back to the leftmost unused term, then forward to the rightmost unused term, etc.
In each pass, the partial sum is placed in the new row directly under the term most recently used in the sum. Continue in this way until all the terms of the prior row have been used and then complete the new row by appending a zero at the end. Pendular sums are so named because the process resembles a swinging pendulum that slows down on each pass until it eventually comes to rest in the center.
In the simplest case, pendular triangles obey the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n>=k>0, with T(n,0)=1 and T(n,n)=0^n, for some fixed number p.
In which case the g.f. G=G(x) of the central terms satisfies: G = 1 - p*x*G + p*x*G^2 + x*G^3.
More generally, a pendular triangle is defined by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + Sum_{j>=1} p(j)*T(n-1,k-1+j), for n>=k>0, with T(n,0)=1 and T(n,n)=0^n.
Remarkably, the g.f. G=G(x) of the central terms satisfies: G = 1 + x*G^3 + Sum_{j>=1} p(j)*x^j*[G^(2*j) - G^(2*j-1)].
Further, the g.f. of the m-th lower semi-diagonal equals G(x)^(m+1) for m>=0, where the m-th semi-diagonal consists of those terms located at m rows below the central terms.
For variants of pendular triangles, the main diagonal may be nonzero, but then the g.f.s of the semi-diagonals are more complex.

Examples

			Row 6 equals the pendular sums of row 5:
  [1,  4,  9,  5,  1,  0], where the sums proceed as follows:
  [1, __, __, __, __, __], T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1], T(6,5) = T(6,0) + T(5,5) = 1 + 0 = 1;
  [1,  5, __, __, __,  1], T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  6,  1], T(6,4) = T(6,1) + T(5,4) = 5 + 1 = 6;
  [1,  5, 15, __,  6,  1], T(6,2) = T(6,4) + T(5,2) = 6 + 9 = 15;
  [1,  5, 15, 20,  6,  1], T(6,3) = T(6,2) + T(5,3) = 15 + 5 = 20;
  [1,  5, 15, 20,  6,  1, 0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  4,   1,    0;
  1,  4,  9,   5,    1,    0;
  1,  5, 15,  20,    6,    1,    0;
  1,  6, 22,  48,   28,    7,    1,    0;
  1,  7, 30,  85,  113,   37,    8,    1,   0;
  1,  8, 39, 132,  282,  169,   47,    9,   1,  0;
  1,  9, 49, 190,  519,  688,  237,   58,  10,  1,  0;
  1, 10, 60, 260,  837, 1762, 1074,  318,  70, 11,  1, 0;
  1, 11, 72, 343, 1250, 3330, 4404, 1568, 413, 83, 12, 1, 0; ...
Central terms are T(2*n,n) = A108447(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118341(n) = [A108447^2](n),
T(2*n+2,n) = A118342(n) = [A108447^3](n).
		

Crossrefs

Cf. A108447 (central terms), A118341, A118343.
variants: A118344 (Catalan), A118362 (ternary), A118350, A118355.
Cf. A167763 (p=0), this sequence (p=1), A118345 (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    {T(n,k) = if(n2*k, T(n-1,k) + T(n,n-k), T(n-1,k) + T(n,n-1-k)))))}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2*n+m,n) = [A108447^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A108447; compare semi-diagonals to the diagonals of convolution triangle A118343.

A364747 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)).

Original entry on oeis.org

1, 1, 5, 32, 234, 1854, 15490, 134380, 1198944, 10931761, 101412677, 954155059, 9083120975, 87326765375, 846709605539, 8269910074087, 81291388929027, 803592049667495, 7983612883739843, 79671910265120574, 798283229227457304, 8027625597750959053
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=1, t=4, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)

A364984 E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)).

Original entry on oeis.org

1, 1, 8, 117, 2596, 77705, 2936406, 134228059, 7204913528, 444331053873, 30963240318250, 2406301353714731, 206354828717754036, 19357367027097743449, 1971809610601104110942, 216754216326949771274715, 25575749384428387961718256, 3224227609551980271408565985
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(n+2*k+1, k)/((n+2*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(n+2*k+1,k)/( (n+2*k+1)*(n-k)! ).

A378692 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)).

Original entry on oeis.org

1, 1, 8, 86, 1075, 14667, 211799, 3182454, 49243854, 779379652, 12558073022, 205312307834, 3397359326116, 56790504859929, 957574385205771, 16267419813629731, 278162968238908681, 4783813617177604232, 82691541747420586716, 1435895455224032519430, 25035634270828781060188
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=1, t=7, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).

A336706 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 4, 1, 1, 4, 11, 14, 9, 1, 1, 5, 20, 45, 42, 21, 1, 1, 6, 32, 113, 197, 132, 51, 1, 1, 7, 47, 234, 688, 903, 429, 127, 1, 1, 8, 65, 424, 1854, 4404, 4279, 1430, 323, 1, 1, 9, 86, 699, 4159, 15490, 29219, 20793, 4862, 835
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,     1,     1,      1, ...
   1,   1,   1,    1,     1,     1,      1, ...
   1,   2,   3,    4,     5,     6,      7, ...
   2,   5,  11,   20,    32,    47,     65, ...
   4,  14,  45,  113,   234,   424,    699, ...
   9,  42, 197,  688,  1854,  4159,   8192, ...
  21, 132, 903, 4404, 15490, 43097, 101538, ...
		

Crossrefs

Columns k=0-3 give: A001006(n-1), A000108, A001003, A108447.
Main diagonal gives A335871.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {T(n, k) = if(n==0, 1, sum(j=1, n, binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
    
  • PARI
    {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-x*A)); polcoef(A, n)}

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 - x * A_k(x)).

A378686 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(7/3)/(1 - x*A(x)) )^3.

Original entry on oeis.org

1, 3, 27, 313, 4122, 58584, 875897, 13577139, 216224616, 3516601243, 58160887857, 975211608399, 16539799297342, 283243124783136, 4890858070498203, 85060240453556192, 1488653675438168001, 26197808077514204832, 463311206395709908936, 8229849868810254813378
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=1, t=7, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2/(1 - x*A(x)) )^3.
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A378685.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
Showing 1-10 of 19 results. Next