cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108488 Expansion of 1/sqrt(1 -2*x -3*x^2 -4*x^3 +4*x^4).

Original entry on oeis.org

1, 1, 3, 9, 23, 69, 203, 601, 1815, 5493, 16731, 51225, 157367, 485093, 1499499, 4646233, 14427095, 44880981, 139849979, 436419737, 1363713015, 4266417221, 13362194571, 41891406681, 131452430999, 412835452213, 1297543367835
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Comments

In general, Sum_{k=0..n} C(n-k,k)^2*a^k*b^(n-k) has the expansion 1/sqrt(1 -2*b*x -(2*a*b -b^2)*x^2 -2*a*b^2*x^3 +(a*b)^2*x^4).
Diagonal of the rational function 1 / ((1 - x)*(1 - y) - 2*(x*y)^2). - Ilya Gutkovskiy, Apr 23 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^2*2^k,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 24 2013 *)
    CoefficientList[Series[1/Sqrt[1-2x-3x^2-4x^3+4x^4],{x,0,30}],x] (* Harvey P. Dale, Apr 06 2023 *)
  • PARI
    {a(n)=polcoeff( exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k) * 2^k * x^k) *x^m/m) +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014

Formula

a(n) = Sum_{k=0..n} C(n-k, k)^2*2^k.
a(n) ~ ((4*sqrt(2)-1)/62)^(1/4) * (1+2*sqrt(2)+sqrt(1+4*sqrt(2)))^(n+1) /(sqrt(Pi*n)*2^(n+2)). - Vaclav Kotesovec, Jul 24 2013
D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +3*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3) +4*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 06 2013
G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * 2^k * x^k ). - Paul D. Hanna, Aug 31 2014