cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A387480 a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 3, 15, 99, 603, 3807, 24759, 162243, 1072683, 7147359, 47887767, 322330995, 2178055899, 14765637663, 100380161655, 684061007139, 4671543976587, 31962145170015, 219043736154711, 1503380943222867, 10332034575214779, 71092843087100319, 489712662842798007
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * 2^(n-k) * Binomial(k, n-k)^2: k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[3^k*2^(n-k)*Binomial[k,n-k]^2,{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(k, n-k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x-6*x^2)^2 - 72*x^3).

A387478 a(n) = Sum_{k=0..floor(n/2)} 2^k * 3^(n-2*k) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 2, 6, 4, 48, 44, 216, 664, 984, 5216, 9312, 30160, 93312, 194528, 717792, 1674688, 4842624, 14554304, 35517312, 112151680, 293213568, 823387136, 2409934848, 6348908800, 18760218624, 51418362368, 143838905856, 414017065984, 1132211048448, 3255687793664
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k *3^(n-2*k)* Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^k* 3^(n-2*k)*Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^k*3^(n-2*k)*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^2-6*x^3)^2 - 48*x^5).

A387479 a(n) = Sum_{k=0..floor(n/3)} 2^k * 3^(n-3*k) * binomial(k,n-3*k)^2.

Original entry on oeis.org

1, 0, 0, 2, 6, 0, 4, 48, 36, 8, 216, 648, 232, 768, 5184, 6944, 3696, 28800, 86464, 71712, 137376, 691328, 1185216, 1067904, 4280512, 12749952, 15523200, 26248832, 102010752, 201056256, 243856384, 694548480, 1995570432, 3031771136, 5109762048, 16129681920
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k *3^(n-3*k)* Binomial(k,n-3*k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^k* 3^(n-3*k)*Binomial[k,n-3*k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*3^(n-3*k)*binomial(k, n-3*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^3-6*x^4)^2 - 48*x^7).

A387511 a(n) = Sum_{k=0..floor(n/3)} 3^k * 2^(n-2*k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 2, 4, 14, 64, 248, 868, 3176, 12352, 48344, 186688, 720896, 2810128, 11021984, 43290688, 170193632, 670576384, 2648370560, 10477291072, 41502538880, 164602863616, 653632824704, 2598446927872, 10339935936512, 41181966803200, 164155849556480, 654848284582912
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Cf. A108490.

Programs

  • Magma
    [(&+[3^k * 2^(n-2*k) * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[3^k*2^(n-2*k)*Binomial[n-2*k,k]^2,{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 3^k*2^(n-2*k)*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x-6*x^3)^2 - 48*x^4).
Showing 1-4 of 4 results.