cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A108543 Primes that are factors of golden semiprimes (A108540).

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 37, 41, 47, 59, 67, 79, 97, 101, 103, 107, 109, 127, 131, 149, 157, 163, 167, 173, 181, 193, 211, 227, 241, 263, 271, 277, 283, 293, 311, 313, 353, 367, 379, 383, 389, 397, 409, 419, 433, 439, 449, 457, 487, 503, 509, 563, 571
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Crossrefs

Union of A108541 and A108542.
Complement of A108545.

Extensions

Corrected by T. D. Noe, Oct 25 2006

A108544 Primes that are factors of distinct golden semiprimes (A108540).

Original entry on oeis.org

3, 11, 37, 67, 163, 167, 241, 271, 367, 449, 457, 613, 661, 1613, 1979, 2069, 2137, 2221, 2347, 2351, 2381, 2399, 2477, 2633, 2749, 2837, 3011, 3449, 3593, 3671, 3797, 3911, 3943, 4001, 4049, 4079, 4241, 4999, 5147, 5261, 5711, 5981, 6337, 6379, 6619
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Crossrefs

Intersection of A108541 and A108542.

A107768 Integers p*q*r such that p*q and q*r are both golden semiprimes (A108540). Integers p*q*r such that p = A108541(j), q = A108542(j) = A108541(k) and r = A108542(k).

Original entry on oeis.org

30, 1309, 50209, 299423, 4329769, 4661471, 13968601, 19867823, 49402237, 90419171, 95575609, 230236057, 289003081, 4195692049, 7752275351, 8857002097, 9759031489, 10956612769, 12930672109, 12991059409, 13494943703, 13807499677, 15195694009, 18253659551, 20769940297
Offset: 1

Views

Author

Jonathan Vos Post, Jun 11 2005

Keywords

Comments

Golden 3-almost primes.
Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. How long a chain is possible of the form p(1) * p(2) * p(3) * ... * p(n) where each successive pair of values are factors of a golden semiprime? That is, if Zumkeller's golden semiprimes are the 2-dimensional case and the present sequence is the 3-dimensional case, is there a maximum n for an n-dimensional case?

Examples

			30 = 2 * 3 * 5, where both 2*3=6 and 3*5=15 are golden semiprimes.
1309 = 7 * 11 * 17.
50209 = 23 * 37 * 59.
		

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; g[p_] := Module[{ p1 = f[p]}, If[p1 == 0, 0, p2 = f[p1]; If[p2 == 0, 0, p*p1*p2]]]; seq={}; p=1; Do[p = NextPrime[p]; gp = g[p]; If[gp > 0, AppendTo[seq, gp]], {300}]; seq (* Amiram Eldar, Nov 29 2019 *)

Extensions

More terms from Amiram Eldar, Nov 29 2019

A108545 Primes that are not factors of golden semiprimes (A108540).

Original entry on oeis.org

13, 43, 53, 61, 71, 73, 83, 89, 113, 137, 139, 151, 179, 191, 197, 199, 223, 229, 233, 239, 251, 257, 269, 281, 307, 317, 331, 337, 347, 349, 359, 373, 401, 421, 431, 443, 461, 463, 467, 479, 491, 499, 521, 523, 541, 547, 557, 569, 577, 587, 599, 601, 617
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

Complement of A108543;
abs(a(i) - a(j) * phi) > 1 for all i and j, where phi = golden ratio = (1+sqrt(5))/2.

Crossrefs

A108200 Least positive k such that k*n + 1 is a golden semiprime (A108540).

Original entry on oeis.org

5, 7, 62, 19, 1, 31, 2, 1254, 1692, 85, 912, 49, 20796, 1, 1234, 627, 50, 846, 4, 860, 28, 456, 4076, 418, 34, 10398, 564, 21, 91250, 617, 6, 47670, 304, 25, 6218, 423, 352018, 2, 6932, 430, 9348, 14, 400, 228, 2874, 2038, 324, 209, 12, 17, 5562, 5199, 25784, 282
Offset: 1

Views

Author

Jason Earls, Jun 15 2005

Keywords

Comments

Conjecture: for every n > 4 there exists a number k < n^[n/2] such that k*n + 1 is a golden semiprime, where [] is the floor function.

Examples

			a(3) = 62 because 62*3+1 = 187 = 11*17 and 11*phi-17 = 0.7983... < 1.
		

Crossrefs

Cf. A108540.

Programs

  • Mathematica
    goldQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] != 2, False, If[Max[f[[;;,2]]] != 1, False, Abs[f[[2,1]] - f[[1,1]] * GoldenRatio] < 1]]]; a[n_] := Module[{k = 1}, While[!goldQ[k * n + 1], k++]; k]; Array[a, 54] (* Amiram Eldar, Nov 29 2019 *)

A108399 Least positive k such that n^2 + k is a golden semiprime (A108540).

Original entry on oeis.org

5, 2, 6, 61, 52, 41, 28, 13, 106, 87, 66, 43, 18, 393, 364, 333, 300, 265, 228, 189, 148, 105, 60, 13, 226, 175, 122, 67, 10, 463, 402, 339, 274, 207, 138, 67, 814, 739, 662, 583, 502, 419, 334, 247, 158, 67, 538, 443, 346, 247, 146, 43, 4494, 4387, 4278, 4167, 4054
Offset: 1

Views

Author

Jason Earls, Jul 03 2005

Keywords

Comments

Conjecture: for every n > 1 there exists a number k < n^3 such that n^2 + k is a golden semiprime.

Examples

			a(4)=61 because 4^2+61 = 77 = 7*11 and 7*phi-11 = 0.326237... < 1.
		

Crossrefs

Cf. A108540.

Programs

  • Mathematica
    goldQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] != 2, False, If[Max[f[[;;,2]]] != 1, False, Abs[f[[2,1]] - f[[1,1]] * GoldenRatio] < 1]]]; a[n_] := Module[{k = 1}, While[!goldQ[n^2 + k], k++]; k]; Array[a, 57] (* Amiram Eldar, Nov 29 2019 *)

A330092 The least prime that starts a chain of exactly n primes such that the product of each successive pair is a golden semiprime (A108540).

Original entry on oeis.org

5, 3, 2, 103, 2437, 6991, 455033, 252492571, 8276659373, 18749113741
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2019

Keywords

Comments

The question of the existence of arbitrary long chains of such primes was asked by Jonathan Vos Post in A107768.
Such chains may be called "golden chains of primes". They are analogous to Cunningham chains: this sequence is analogous to A005602, as A108541 is analogous to A005384.

Examples

			a(1) = 5 since 5 is not a lesser prime of a golden semiprime, i.e., it is not in A108541.
a(2) = 3 since 3 * 5 is a golden semiprime.
a(3) = 2 since {2, 3, 5} is a chain of 3 primes such that 2 * 3 and 3 * 5 are golden semiprimes.
		

Crossrefs

Programs

  • Mathematica
    goldPrime[p_] := Module[{x = GoldenRatio*p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]];
    goldChainLength[p_] := -1 + Length @ NestWhileList[goldPrime, p, # > 0 &];
    max = 7; seq = Table[0, {max}]; count = 0; p = 1; While[count < max, p = NextPrime[p]; i = goldChainLength[p]; If[i <= max && seq[[i]] < 1, count++; seq[[i]] = p]]; seq

A108542 Greater prime factor of n-th golden semiprime.

Original entry on oeis.org

3, 5, 11, 17, 31, 37, 47, 59, 67, 109, 127, 157, 163, 167, 173, 211, 241, 263, 271, 293, 313, 367, 389, 439, 449, 457, 503, 571, 593, 613, 619, 643, 661, 677, 701, 727, 739, 787, 823, 911, 983, 991, 1021, 1069, 1163, 1187, 1231, 1289, 1381, 1429, 1487, 1523
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

abs(phi*A108541(n) - a(n)) < 1, where phi = golden ratio = (1+sqrt(5))/2.

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, q]], {200}]; seq (* Amiram Eldar, Nov 28 2019 *)

Formula

a(n) = A108540(n)/A108541(n).

A108539 a(n) = that prime p such that p/prime(n) is nearest to phi, the golden ratio: phi=(1+sqrt(5))/2.

Original entry on oeis.org

3, 5, 7, 11, 17, 23, 29, 31, 37, 47, 53, 59, 67, 71, 79, 83, 97, 97, 109, 113, 113, 127, 137, 149, 157, 163, 167, 173, 179, 181, 211, 211, 223, 223, 241, 241, 257, 263, 271, 281, 293, 293, 311, 313, 317, 317, 337, 359, 367, 373, 379, 389, 389, 409, 419, 421, 433
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

a(n)*prime(n) is a term of A108540 iff abs(phi-a(n)/prime(n))<1.

Crossrefs

A108542 is a subsequence.

Programs

  • Mathematica
    a[n_] := Module[{x = GoldenRatio * Prime[n]}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; If[x - p1 < p2 - x, p1, p2]]; Array[a, 57] (* Amiram Eldar, Nov 28 2019 *)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A108541 Lesser prime factor of n-th golden semiprime.

Original entry on oeis.org

2, 3, 7, 11, 19, 23, 29, 37, 41, 67, 79, 97, 101, 103, 107, 131, 149, 163, 167, 181, 193, 227, 241, 271, 277, 283, 311, 353, 367, 379, 383, 397, 409, 419, 433, 449, 457, 487, 509, 563, 607, 613, 631, 661, 719, 733, 761, 797, 853, 883, 919, 941, 971, 997, 1031
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

abs(phi*a(n) - A108542(n)) < 1, where phi = golden ratio = (1+sqrt(5))/2.

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; If[f[p] > 0, AppendTo[seq, p]], {200}]; seq (* Amiram Eldar, Nov 28 2019 *)

Formula

a(n) = A108540(n)/A108542(n).
Showing 1-10 of 16 results. Next