cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A107768 Integers p*q*r such that p*q and q*r are both golden semiprimes (A108540). Integers p*q*r such that p = A108541(j), q = A108542(j) = A108541(k) and r = A108542(k).

Original entry on oeis.org

30, 1309, 50209, 299423, 4329769, 4661471, 13968601, 19867823, 49402237, 90419171, 95575609, 230236057, 289003081, 4195692049, 7752275351, 8857002097, 9759031489, 10956612769, 12930672109, 12991059409, 13494943703, 13807499677, 15195694009, 18253659551, 20769940297
Offset: 1

Views

Author

Jonathan Vos Post, Jun 11 2005

Keywords

Comments

Golden 3-almost primes.
Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. How long a chain is possible of the form p(1) * p(2) * p(3) * ... * p(n) where each successive pair of values are factors of a golden semiprime? That is, if Zumkeller's golden semiprimes are the 2-dimensional case and the present sequence is the 3-dimensional case, is there a maximum n for an n-dimensional case?

Examples

			30 = 2 * 3 * 5, where both 2*3=6 and 3*5=15 are golden semiprimes.
1309 = 7 * 11 * 17.
50209 = 23 * 37 * 59.
		

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; g[p_] := Module[{ p1 = f[p]}, If[p1 == 0, 0, p2 = f[p1]; If[p2 == 0, 0, p*p1*p2]]]; seq={}; p=1; Do[p = NextPrime[p]; gp = g[p]; If[gp > 0, AppendTo[seq, gp]], {300}]; seq (* Amiram Eldar, Nov 29 2019 *)

Extensions

More terms from Amiram Eldar, Nov 29 2019

A001358 Semiprimes (or biprimes): products of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024

Examples

			From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
   4 = 2*2     46 = 2*23     91 = 7*13    141 = 3*47
   6 = 2*3     49 = 7*7      93 = 3*31    142 = 2*71
   9 = 3*3     51 = 3*17     94 = 2*47    143 = 11*13
  10 = 2*5     55 = 5*11     95 = 5*19    145 = 5*29
  14 = 2*7     57 = 3*19    106 = 2*53    146 = 2*73
  15 = 3*5     58 = 2*29    111 = 3*37    155 = 5*31
  21 = 3*7     62 = 2*31    115 = 5*23    158 = 2*79
  22 = 2*11    65 = 5*13    118 = 2*59    159 = 3*53
  25 = 5*5     69 = 3*23    119 = 7*17    161 = 7*23
  26 = 2*13    74 = 2*37    121 = 11*11   166 = 2*83
  33 = 3*11    77 = 7*11    122 = 2*61    169 = 13*13
  34 = 2*17    82 = 2*41    123 = 3*41    177 = 3*59
  35 = 5*7     85 = 5*17    129 = 3*43    178 = 2*89
  38 = 2*19    86 = 2*43    133 = 7*19    183 = 3*61
  39 = 3*13    87 = 3*29    134 = 2*67    185 = 5*37
(End)
		

References

  • Archimedeans Problems Drive, Eureka, 17 (1954), 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.

Crossrefs

Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.

Programs

  • Haskell
    a001358 n = a001358_list !! (n-1)
    a001358_list = filter ((== 2) . a001222) [1..]
    
  • Magma
    [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
    Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
    
  • PARI
    A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 2
    print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A001358(n):
        def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024

Formula

a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025

Extensions

More terms from James Sellers, Aug 22 2000

A084126 Prime factor <= other prime factor of n-th semiprime.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 17, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2003

Keywords

Comments

Lesser of the prime factors of A001358(n). - Jianing Song, Aug 05 2022

Crossrefs

Cf. A001358 (the semiprimes), A084127 (greater of the prime factors of the semiprimes).

Programs

  • Haskell
    a084126 = a020639 . a001358  -- Reinhard Zumkeller, Nov 25 2012
    
  • Mathematica
    FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
  • Python
    from sympy import primepi, primerange, primefactors
    def A084126(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return min(primefactors(bisection(f,n,n))) # Chai Wah Wu, Apr 03 2025

Formula

a(n) = A020639(A001358(n)).
a(n) = A001358(n)/A006530(A001358(n)). [corrected by Michel Marcus, Jul 18 2020]
a(n) = A001358(n)/A084127(n).

A108540 Golden semiprimes: a(n)=p*q and abs(p*phi-q)<1, where phi = golden ratio = (1+sqrt(5))/2.

Original entry on oeis.org

6, 15, 77, 187, 589, 851, 1363, 2183, 2747, 7303, 10033, 15229, 16463, 17201, 18511, 27641, 35909, 42869, 45257, 53033, 60409, 83309, 93749, 118969, 124373, 129331, 156433, 201563, 217631, 232327, 237077, 255271, 270349, 283663, 303533, 326423
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005; revised Jun 13 2005

Keywords

Examples

			589 = 19*31 and abs(19*phi - 31) = abs(30,7426... - 31) < 1, therefore 589 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, p*q]], {100}]; seq (* Amiram Eldar, Nov 28 2019 *)

Formula

a(n) = A108541(n)*A108542(n) = A000040(k)*A108539(k) for some k.

Extensions

Corrected by T. D. Noe, Oct 25 2006

A108542 Greater prime factor of n-th golden semiprime.

Original entry on oeis.org

3, 5, 11, 17, 31, 37, 47, 59, 67, 109, 127, 157, 163, 167, 173, 211, 241, 263, 271, 293, 313, 367, 389, 439, 449, 457, 503, 571, 593, 613, 619, 643, 661, 677, 701, 727, 739, 787, 823, 911, 983, 991, 1021, 1069, 1163, 1187, 1231, 1289, 1381, 1429, 1487, 1523
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

abs(phi*A108541(n) - a(n)) < 1, where phi = golden ratio = (1+sqrt(5))/2.

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, q]], {200}]; seq (* Amiram Eldar, Nov 28 2019 *)

Formula

a(n) = A108540(n)/A108541(n).

A108543 Primes that are factors of golden semiprimes (A108540).

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 37, 41, 47, 59, 67, 79, 97, 101, 103, 107, 109, 127, 131, 149, 157, 163, 167, 173, 181, 193, 211, 227, 241, 263, 271, 277, 283, 293, 311, 313, 353, 367, 379, 383, 389, 397, 409, 419, 433, 439, 449, 457, 487, 503, 509, 563, 571
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Crossrefs

Union of A108541 and A108542.
Complement of A108545.

Extensions

Corrected by T. D. Noe, Oct 25 2006

A108544 Primes that are factors of distinct golden semiprimes (A108540).

Original entry on oeis.org

3, 11, 37, 67, 163, 167, 241, 271, 367, 449, 457, 613, 661, 1613, 1979, 2069, 2137, 2221, 2347, 2351, 2381, 2399, 2477, 2633, 2749, 2837, 3011, 3449, 3593, 3671, 3797, 3911, 3943, 4001, 4049, 4079, 4241, 4999, 5147, 5261, 5711, 5981, 6337, 6379, 6619
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Crossrefs

Intersection of A108541 and A108542.

A165571 Lesser prime factor of successively better golden semiprimes.

Original entry on oeis.org

2, 3, 7, 19, 23, 29, 97, 353, 563, 631, 919, 1453, 2207, 15271, 15737, 42797, 49939, 133559, 179317, 287557, 508451, 918011, 1103483, 1981891, 9181097, 16958611, 17351447, 52204391, 66602803, 99641617, 134887397, 487195147, 629449511, 943818943, 1527963169, 2048029369
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2009

Keywords

Comments

See A165569 and A165570 for the definition. Probably a subset of A108541.

Crossrefs

Programs

  • Mathematica
    f[p_] := Module[{x = GoldenRatio * p, p1, p2}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; If[p2 - x > x - p1, p1, p2]]; seq={}; dm = 1; p1 = 1; Do[p1 = NextPrime[p1]; k++; p2 = f[p1]; d = Abs[p2/p1 - GoldenRatio]; If[d < dm, dm = d; AppendTo[seq, p1]], {10^4}]; seq  (* Amiram Eldar, Nov 28 2019 *)

Formula

a(n) = A000040(A165569(n)).
a(n) = A165570(n)/A165572(n).

Extensions

a(16)-a(23) from Donovan Johnson, May 13 2010
a(24)-a(36) from Amiram Eldar, Nov 28 2019

A330092 The least prime that starts a chain of exactly n primes such that the product of each successive pair is a golden semiprime (A108540).

Original entry on oeis.org

5, 3, 2, 103, 2437, 6991, 455033, 252492571, 8276659373, 18749113741
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2019

Keywords

Comments

The question of the existence of arbitrary long chains of such primes was asked by Jonathan Vos Post in A107768.
Such chains may be called "golden chains of primes". They are analogous to Cunningham chains: this sequence is analogous to A005602, as A108541 is analogous to A005384.

Examples

			a(1) = 5 since 5 is not a lesser prime of a golden semiprime, i.e., it is not in A108541.
a(2) = 3 since 3 * 5 is a golden semiprime.
a(3) = 2 since {2, 3, 5} is a chain of 3 primes such that 2 * 3 and 3 * 5 are golden semiprimes.
		

Crossrefs

Programs

  • Mathematica
    goldPrime[p_] := Module[{x = GoldenRatio*p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]];
    goldChainLength[p_] := -1 + Length @ NestWhileList[goldPrime, p, # > 0 &];
    max = 7; seq = Table[0, {max}]; count = 0; p = 1; While[count < max, p = NextPrime[p]; i = goldChainLength[p]; If[i <= max && seq[[i]] < 1, count++; seq[[i]] = p]]; seq
Showing 1-9 of 9 results.