A108566 a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, for n>4: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5)], where SORT places digits in ascending order and deletes 0's.
0, 1, 1, 2, 4, 8, 16, 23, 45, 89, 158, 339, 67, 127, 258, 138, 178, 117, 588, 146, 1245, 1224, 3489, 689, 1378, 1178, 239, 1789, 2678, 1579, 1488, 1589, 2369, 11249, 2259, 2335, 12289, 239, 347, 12788, 2357, 3355, 13357, 23344, 45558, 1579, 5589
Offset: 0
Examples
a(7) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
Links
- Richard I. Hess, Problem 920: sorted Fibonacci sequence, Pi Mu Epsilon Journal, Vol. 10 (Fall 1998) No. 9, pp. 754-755.
Programs
-
Mathematica
nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,FromDigits[Sort[IntegerDigits[Total[{a,b,c,d,e,f}]]]]}; NestList[nxt,{0,1,1,2,4,8},50][[All,1]] (* Harvey P. Dale, May 05 2022 *)
Formula
Sorted hexanacci numbers, a.k.a. sorted Fibonacci 6-step sequence.
Comments