cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108565 a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, for n>3: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4)], where SORT places digits in ascending order and deletes 0's.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 13, 34, 57, 128, 248, 48, 155, 366, 459, 1267, 2259, 456, 478, 1499, 5599, 1129, 1169, 4789, 11458, 12444, 3899, 33579, 16669, 4789, 1378, 1346, 15677, 35899, 5899, 1699, 256, 3459, 12247, 2356, 127, 14458, 23467, 25556, 45669, 12779
Offset: 0

Views

Author

Jonathan Vos Post, Jun 10 2005

Keywords

Comments

Sorted Pentanacci Numbers, a.k.a. Sorted Fibonacci 5-step Sequence.
Corrected and extended by T. D. Noe, who also found that Max = 334566999 occurs at a(67701). However, this is the only time that the maximum occurs. The cycle period has length 251784 and begins at a(1183787). Primes include: a(3) = 2, a(7) = 13, a(20) = 1499, a(22) = 1129, a(24) = 4789, a(30) = 4789, a(34) = 35899, a(36) = 1699, a(41) = 127, a(52) = 124577, a(62) = 33889, a(66) = 1579, a(67) = 25667, a(71) = 2789, a(80) = 4567, a(82) = 57899, a(87) = 23399, a(89) = 245899, a(90) = 349, a(93) = 346669. Semiprimes include: a(4) = 4 = 2^2, a(8) = 34 = 2 * 17, a(9) = 57 = 3 * 19, a(13) = 155 = 5 * 31, a(16) = 1267 = 7 * 181, a(19) = 478 = 2 * 239, a(21) = 5599 = 11 * 509, a(23) = 1169 = 7 * 167, a(27) = 3899 = 7 * 557, a(29) = 16669 = 79 * 211, a(32) = 1346 = 2 * 673, a(33) = 15677 = 61 * 257, a(35) = 5899 = 17 * 347, a(38) = 3459 = 3 * 1153, a(39) = 12247 = 37 * 331, a(42) = 14458 = 2 * 7229, a(43) = 23467 = 31 * 757, a(46) = 12779 = 13 * 983, a(48) = 12779 = 13 * 983, a(51) = 234557 = 163 * 1439, a(53) = 47899 = 19 * 2521, a(54) = 12459 = 3 * 4153, a(58) = 158 = 2 * 79, a(60) = 22299 = 3 * 7433, a(64) = 4579 = 19 * 241, a(65) = 689 = 13 * 53, a(70) = 24599 = 17 * 1447, a(74) = 26678 = 2 * 13339, a(75) = 1579, a(77) = 16789 = 103 * 163, a(78) = 2489 = 19 * 131, a(84) = 111379 = 127 * 877, a(85) = 122333 = 71 * 1723, a(86) = 34899 = 3 * 11633, a(99) = 1344479 = 17 * 79087, a(100) = 1245889 = 337 * 3697.

Examples

			a(8) = SORT[a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[61] = 16.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,FromDigits[Select[Sort[ IntegerDigits[ a+b+c+d+e]],#!=0&]]}; NestList[nxt,{0,1,1,2,4},50][[All,1]]

A370254 a(0) = 1, a(n) = result of eliminating the digit 7 from the sum of all previous terms for n>=1.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 3268, 36036, 202, 224, 2498, 4996, 9992, 89984, 19968, 199936, 39982, 439854, 8908, 888616, 1232, 18464, 196928, 1993856, 39812, 402524, 4430048, 8860096, 120192, 1840384, 1968068
Offset: 0

Views

Author

Sergio Pimentel, Feb 13 2024

Keywords

Examples

			a(16) = 3268 since the sum of a(0)..a(15) = 32768. Eliminating the "7" we get 3268.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (l-> add(l[i]*10^(i-1),
          i=1..nops(l)))(subs(7=NULL, convert(s(n-1), base, 10))))
        end:
    s:= proc(n) option remember; `if`(n<0, 0, s(n-1)+a(n)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 15 2024
  • Mathematica
    Module[{nmax=50, s=1, a}, NestList[(s+=(a=FromDigits[DeleteCases[IntegerDigits[s], 7]]); a) &, s, nmax]] (* Paolo Xausa, Feb 19 2024 *)
  • PARI
    lista(nn) = my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = sum(k=1, n-1, va[k]); my(d=digits(va[n])); if (vecsearch(Set(d), 7), my(list = List()); for (i=1, #d, if (d[i] !=7, listput(list, d[i]));); va[n] = fromdigits(Vec(list)););); va; \\ Michel Marcus, Feb 13 2024

Formula

a(n) = A004182(Sum_{i=0..n-1} a(i)) for n >= 1, a(0) = 1.
a(n) = A011782(n) for n <= 15.

A108567 a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, a(6) = 16, for n>5: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6)], where SORT places digits in ascending order and deletes 0's.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 23, 55, 19, 127, 225, 347, 128, 249, 115, 112, 133, 139, 1223, 299, 227, 2248, 1348, 1567, 157, 679, 2556, 2788, 11334, 2249, 1233, 2699, 23358, 12467, 12568, 5689, 2366, 368, 15559, 23577, 24579, 4678, 16678, 5788, 12279, 11338
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2005

Keywords

Comments

T. D. Noe found that the maximum is attained at a(4992871827) = 234444568999. The periodic part of this sequence begins at a(3544675600) and has length 5158842780.

Examples

			a(7) = SORT[a(0) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6)] = SORT[0 + 1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
a(8) = SORT[a(1) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16 + 23] = SORT[55] = 55.
a(9) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8)] = SORT[1 + 2 + 4 + 8 + 16 + 23 + 55] = SORT[109] = 19.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,FromDigits[Sort[ IntegerDigits[ a+b+c+d+e+f+g]/.(0->Nothing)]]}; NestList[nxt,{0,1,1,2,4,8,16},50][[All,1]] (* Harvey P. Dale, May 09 2020 *)
Showing 1-3 of 3 results.