cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108562 Primes of the form prime(n) + prime(n+1) - 2n - 1.

Original entry on oeis.org

2, 3, 5, 13, 17, 53, 61, 79, 103, 109, 137, 151, 163, 179, 229, 271, 277, 317, 353, 409, 419, 431, 439, 443, 491, 499, 547, 557, 569, 593, 619, 631, 641, 677, 719, 811, 887, 937, 997, 1009, 1021, 1051, 1063, 1091, 1201, 1229, 1249, 1259, 1307, 1327, 1367
Offset: 1

Views

Author

Giovanni Teofilatto, Jul 05 2005

Keywords

Crossrefs

Cf. A108568.

Programs

  • Mathematica
    Select[(#[[3]]+#[[2]]-2#[[1]]-1)&/@(Join[{PrimePi[#[[1]]]},#]&/@ Partition[ Prime[Range[200]],2,1]),PrimeQ] (* Harvey P. Dale, Sep 07 2012 *)

Extensions

Extended by Ray Chandler, Jul 10 2005

A108567 a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, a(6) = 16, for n>5: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6)], where SORT places digits in ascending order and deletes 0's.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 23, 55, 19, 127, 225, 347, 128, 249, 115, 112, 133, 139, 1223, 299, 227, 2248, 1348, 1567, 157, 679, 2556, 2788, 11334, 2249, 1233, 2699, 23358, 12467, 12568, 5689, 2366, 368, 15559, 23577, 24579, 4678, 16678, 5788, 12279, 11338
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2005

Keywords

Comments

T. D. Noe found that the maximum is attained at a(4992871827) = 234444568999. The periodic part of this sequence begins at a(3544675600) and has length 5158842780.

Examples

			a(7) = SORT[a(0) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6)] = SORT[0 + 1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
a(8) = SORT[a(1) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16 + 23] = SORT[55] = 55.
a(9) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8)] = SORT[1 + 2 + 4 + 8 + 16 + 23 + 55] = SORT[109] = 19.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,FromDigits[Sort[ IntegerDigits[ a+b+c+d+e+f+g]/.(0->Nothing)]]}; NestList[nxt,{0,1,1,2,4,8,16},50][[All,1]] (* Harvey P. Dale, May 09 2020 *)
Showing 1-2 of 2 results.