cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108617 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n, T(n,0) = T(n,n) = n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 5, 6, 5, 3, 5, 8, 11, 11, 8, 5, 8, 13, 19, 22, 19, 13, 8, 13, 21, 32, 41, 41, 32, 21, 13, 21, 34, 53, 73, 82, 73, 53, 34, 21, 34, 55, 87, 126, 155, 155, 126, 87, 55, 34, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144, 89
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 12 2005

Keywords

Comments

Sum of n-th row = 2*A027934(n). - Reinhard Zumkeller, Oct 07 2012

Examples

			Triangle begins:
   0;
   1,   1;
   1,   2,   1;
   2,   3,   3,   2;
   3,   5,   6,   5,   3;
   5,   8,  11,  11,   8,   5;
   8,  13,  19,  22,  19,  13,   8;
  13,  21,  32,  41,  41,  32,  21,  13;
  21,  34,  53,  73,  82,  73,  53,  34,  21;
  34,  55,  87, 126, 155, 155, 126,  87,  55,  34;
  55,  89, 142, 213, 281, 310, 281, 213, 142,  89,  55;
		

Crossrefs

T(2n,n) gives 2*A176085(n).

Programs

  • Haskell
    a108617 n k = a108617_tabl !! n !! k
    a108617_row n = a108617_tabl !! n
    a108617_tabl = [0] : iterate f [1,1] where
       f row@(u:v:_) = zipWith (+) ([v - u] ++ row) (row ++ [v - u])
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    function T(n,k) // T = A108617
      if k eq 0 or k eq n then return Fibonacci(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 20 2023
    
  • Maple
    A108617 := proc(n,k) option remember;
        if k = 0 or k=n then
            combinat[fibonacci](n) ;
        elif k <0 or k > n then
            0 ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Oct 05 2012
  • Mathematica
    a[1]:={0}; a[n_]:= a[n]= Join[{Fibonacci[#]}, Map[Total, Partition[a[#],2,1]], {Fibonacci[#]}]&[n-1]; Flatten[Map[a, Range[15]]] (* Peter J. C. Moses, Apr 11 2013 *)
  • SageMath
    def T(n,k): # T = A108617
        if (k==0 or k==n): return fibonacci(n)
        else: return T(n-1,k-1) + T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 20 2023

Formula

T(n,0) = T(n,n) = A000045(n);
T(n,1) = T(n,n-1) = A000045(n+1) for n>0;
T(n,2) = T(n,n-2) = A000045(n+2) - 2 = A001911(n-1) for n>1;
Sum_{k=0..n} T(n,k) = 2*A027934(n-1) for n>0.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*((n+1 mod 2)*Fibonacci(n-2) + [n=0]). - G. C. Greubel, Oct 20 2023