A108617 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n, T(n,0) = T(n,n) = n-th Fibonacci number.
0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 5, 6, 5, 3, 5, 8, 11, 11, 8, 5, 8, 13, 19, 22, 19, 13, 8, 13, 21, 32, 41, 41, 32, 21, 13, 21, 34, 53, 73, 82, 73, 53, 34, 21, 34, 55, 87, 126, 155, 155, 126, 87, 55, 34, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144, 89
Offset: 0
Examples
Triangle begins: 0; 1, 1; 1, 2, 1; 2, 3, 3, 2; 3, 5, 6, 5, 3; 5, 8, 11, 11, 8, 5; 8, 13, 19, 22, 19, 13, 8; 13, 21, 32, 41, 41, 32, 21, 13; 21, 34, 53, 73, 82, 73, 53, 34, 21; 34, 55, 87, 126, 155, 155, 126, 87, 55, 34; 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Hacéne Belbachir and László Szalay, On the Arithmetic Triangles, Šiauliai Mathematical Seminar, Vol. 9 (17), 2014. See Fig. 1 p. 18.
- Eric Weisstein's World of Mathematics, Fibonacci Number.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Fibonacci number.
- Wikipedia, Pascal's triangle.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a108617 n k = a108617_tabl !! n !! k a108617_row n = a108617_tabl !! n a108617_tabl = [0] : iterate f [1,1] where f row@(u:v:_) = zipWith (+) ([v - u] ++ row) (row ++ [v - u]) -- Reinhard Zumkeller, Oct 07 2012
-
Magma
function T(n,k) // T = A108617 if k eq 0 or k eq n then return Fibonacci(n); else return T(n-1,k-1) + T(n-1,k); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 20 2023
-
Maple
A108617 := proc(n,k) option remember; if k = 0 or k=n then combinat[fibonacci](n) ; elif k <0 or k > n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: # R. J. Mathar, Oct 05 2012
-
Mathematica
a[1]:={0}; a[n_]:= a[n]= Join[{Fibonacci[#]}, Map[Total, Partition[a[#],2,1]], {Fibonacci[#]}]&[n-1]; Flatten[Map[a, Range[15]]] (* Peter J. C. Moses, Apr 11 2013 *)
-
SageMath
def T(n,k): # T = A108617 if (k==0 or k==n): return fibonacci(n) else: return T(n-1,k-1) + T(n-1,k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 20 2023
Comments