A001911
a(n) = Fibonacci(n+3) - 2.
Original entry on oeis.org
0, 1, 3, 6, 11, 19, 32, 53, 87, 142, 231, 375, 608, 985, 1595, 2582, 4179, 6763, 10944, 17709, 28655, 46366, 75023, 121391, 196416, 317809, 514227, 832038, 1346267, 2178307, 3524576, 5702885, 9227463, 14930350, 24157815, 39088167, 63245984
Offset: 0
G.f. = x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 32*x^6 + 53*x^7 + 87*x^8 + ...
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 233.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Charles R Greathouse IV, Table of n, a(n) for n = 0..4783 (next term has 1001 digits)
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016.
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
- C. Dalfó, G. Erskine, G. Exoo, M. A. Fiol, N. López, A. Messegué, and J. Tuite, On large regular (1,1,k)-mixed graphs, Discrete Appl. Math. 356 (2024), 209-228.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- K. Viswanathan Iyer and K. R. Uday Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009. (Corrigendum: Eq.(23) to be corrected as follows on the right-side: in the fourth term F(k)-1 should be replaced by F(k); a term F(k)*F(K+1)-1 is to be included; pointed out by Emeric Deutsch).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
- D. G. Rogers, An application of renewal sequences to the dimer problem, pp. 142-153 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Cf.
A001611,
A000071,
A157725,
A001911,
A157726,
A006327,
A157727,
A157728,
A157729,
A167616. [Added by
N. J. A. Sloane, Jun 25 2010 in response to a comment from
Aviezri S. Fraenkel]
Right-hand column 3 of triangle
A011794.
-
a001911 n = a001911_list !! n
a001911_list = 0 : 1 : map (+ 2) (zipWith (+) a001911_list $ tail a001911_list)
-- Reinhard Zumkeller, Jun 18 2013
-
[(Fibonacci(n+3))-2: n in [0..85]]; // Vincenzo Librandi, Apr 23 2011
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+2 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A001911:=(1+z)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation with another offset
a:= n-> (Matrix([[0,-1,1]]). Matrix([[1,1,0], [1,0,0], [2,0,1]])^n)[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
-
Table[Fibonacci[n+3] -2, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
LinearRecurrence[{2,0,-1}, {0,1,3}, 40] (* Harvey P. Dale, Jun 06 2011 *)
Fibonacci[Range[3,40]]-2 (* Harvey P. Dale, Jun 28 2015 *)
-
a(n)=fibonacci(n+3)-2 \\ Charles R Greathouse IV, Mar 14 2012
-
[fibonacci(n+3)-2 for n in range(60)] # G. C. Greubel, Oct 21 2024
A027934
a(0)=0, a(1)=1, a(2)=2; for n > 2, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
Original entry on oeis.org
0, 1, 2, 5, 11, 24, 51, 107, 222, 457, 935, 1904, 3863, 7815, 15774, 31781, 63939, 128488, 257963, 517523, 1037630, 2079441, 4165647, 8342240, 16702191, 33433039, 66912446, 133899917, 267921227, 536038872, 1072395555, 2145305339
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Patrick Letendre, Polynomials with integer roots, arXiv:1911.00480 [math.NT], 2019. See p. 4.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- OEIS Wiki, Fibonacci rabbits
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
T(n, n) + T(n, n+1) + ... + T(n, 2n), T given by
A027926.
-
List([0..35], n-> 2^n - Fibonacci(n+1) ); # G. C. Greubel, Sep 27 2019
-
a027934 n = a027934_list !! n
a027934_list = 0 : 1 : 2 : zipWith3 (\x y z -> 3 * x - y - 2 * z)
(drop 2 a027934_list) (tail a027934_list) a027934_list
-- Reinhard Zumkeller, Oct 07 2012
-
[2^n - Fibonacci(n+1): n in [0..35]]; // G. C. Greubel, Sep 27 2019
-
A027934:= proc(n) local K; K:= Matrix ([[2,0,0], [0,1,1], [0,1,0]])^n; K[1,1]-K[2,2] end: seq (A027934(n), n=0..31); # Alois P. Heinz, Jul 28 2008
a := n -> 2^n - combinat:-fibonacci(n+1): seq(a(n),n=0..31); # Peter Luschny, May 09 2015
-
nn=31; a:=1/(1-x-x^2); b:=1/(1-2x); CoefficientList[Series[a*x*(1+x*b), {x,0,nn}], x] (* Geoffrey Critzer, Jan 04 2014 *)
LinearRecurrence[{3,-1,-2}, {0,1,2}, 32] (* Jean-François Alcover, Jan 09 2016 *)
nxt[{a_,b_,c_}]:={b,c,3c-b-2a}; NestList[nxt,{0,1,2},40][[;;,1]] (* Harvey P. Dale, Feb 02 2025 *)
-
a(n)=2^n-fibonacci(n+1) \\ Charles R Greathouse IV, Jun 11 2015
-
[2^n - fibonacci(n+1) for n in (0..35)] # G. C. Greubel, Sep 27 2019
A074829
Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Fibonacci number.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 8, 7, 5, 8, 12, 15, 15, 12, 8, 13, 20, 27, 30, 27, 20, 13, 21, 33, 47, 57, 57, 47, 33, 21, 34, 54, 80, 104, 114, 104, 80, 54, 34, 55, 88, 134, 184, 218, 218, 184, 134, 88, 55, 89, 143, 222, 318, 402, 436, 402, 318, 222, 143, 89
Offset: 1
The first and second Fibonacci numbers are 1, 1, so the first and second rows of the triangle are 1; 1 1; respectively. The third row of the triangle begins and ends with the third Fibonacci number, 2 and the middle term is the sum of the contiguous two terms in the second row, i.e., 1 + 1 = 2, so the third row is 2 2 2.
Triangle begins:
1;
1, 1;
2, 2, 2;
3, 4, 4, 3;
5, 7, 8, 7, 5;
8, 12, 15, 15, 12, 8;
13, 20, 27, 30, 27, 20, 13;
21, 33, 47, 57, 57, 47, 33, 21;
34, 54, 80, 104, 114, 104, 80, 54, 34;
...
Formatted as a symmetric triangle:
1;
1, 1;
2, 2, 2;
3, 4, 4, 3;
5, 7, 8, 7, 5;
8, 12, 15, 15, 12, 8;
13, 20, 27, 30, 27, 20, 13;
21, 33, 47, 57, 57, 47, 33, 21;
34, 54, 80, 104, 114, 104, 80, 54, 34;
-
T:= function(n,k)
if k=1 then return Fibonacci(n);
elif k=n then return Fibonacci(n);
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 12 2019
-
a074829 n k = a074829_tabl !! (n-1) !! (k-1)
a074829_row n = a074829_tabl !! (n-1)
a074829_tabl = map fst $ iterate
(\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [u]))) ([1], [1,1])
-- Reinhard Zumkeller, Aug 15 2013
-
A074829 := proc(n,k)
option remember ;
if k=1 or k=n then
combinat[fibonacci](n) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc:
seq(seq(A074829(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Mar 31 2025
-
T[n_, 1]:= Fibonacci[n]; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
T(n,k) = if(k==1 || k==n, fibonacci(n), T(n-1,k-1) + T(n-1,k));
for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
-
def T(n, k):
if (k==1 or k==n): return fibonacci(n)
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 12 2019
A227550
A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0
Triangle begins:
1;
1, 1;
2, 2, 2;
6, 4, 4, 6;
24, 10, 8, 10, 24;
120, 34, 18, 18, 34, 120;
720, 154, 52, 36, 52, 154, 720;
5040, 874, 206, 88, 88, 206, 874, 5040;
40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320;
362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
-
a227550 n k = a227550_tabl !! n !! k
a227550_row n = a227550_tabl !! n
a227550_tabl = map fst $ iterate
(\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
([1], a001563_list)
-- Reinhard Zumkeller, Aug 05 2013
-
function T(n,k)
if k eq 0 or k eq n then return Factorial(n);
else return T(n-1,k-1) + T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A167821
a(n) is the number of n-tosses having a run of 3 or more heads or a run of 3 or more tails for a fair coin (i.e., probability is a(n)/2^n).
Original entry on oeis.org
0, 0, 2, 6, 16, 38, 86, 188, 402, 846, 1760, 3630, 7438, 15164, 30794, 62342, 125904, 253782, 510758, 1026684, 2061730, 4136990, 8295872, 16627166, 33311646, 66716028, 133582106, 267406998, 535206832, 1071049286, 2143127030, 4287918140, 8578528818
Offset: 1
-
[2^n-2*Fibonacci(n+1): n in [1..40]]; // Vincenzo Librandi, Jun 28 2016
-
CoefficientList[Series[(2 x^2)/(1 - 3 x + x^2 + 2 x^3), {x, 0, 30}], x]
Table[2^n - 2*Fibonacci[n + 1], {n, 1, 31}]
LinearRecurrence[{3, -1, -2}, {0, 0, 2}, 50] (* G. C. Greubel, Jun 27 2016 *)
A316938
Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+4).
Original entry on oeis.org
3, 5, 5, 8, 10, 8, 13, 18, 18, 13, 21, 31, 36, 31, 21, 34, 52, 67, 67, 52, 34, 55, 86, 119, 134, 119, 86, 55, 89, 141, 205, 253, 253, 205, 141, 89, 144, 230, 346, 458, 506, 458, 346, 230, 144, 233, 374, 576, 804, 964, 964, 804, 576, 374, 233, 377, 607, 950, 1380, 1768, 1928, 1768, 1380, 950, 607, 377
Offset: 0
Triangle begins:
3;
5, 5;
8, 10, 8;
13, 18, 18, 13;
21, 31, 36, 31, 21;
34, 52, 67, 67, 52, 34;
55, 86, 119, 134, 119, 86, 55;
89, 141, 205, 253, 253, 205, 141, 89;
144, 230, 346, 458, 506, 458, 346, 230, 144;
...
-
t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n+4], m=t[[n,k]]+t[[n,k+1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t
A316939
Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 5, 7, 7, 5, 8, 12, 14, 12, 8, 13, 20, 26, 26, 20, 13, 21, 33, 46, 52, 46, 33, 21, 34, 54, 79, 98, 98, 79, 54, 34, 55, 88, 133, 177, 196, 177, 133, 88, 55, 89, 143, 221, 310, 373, 373, 310, 221, 143, 89, 144, 232, 364, 531, 683, 746, 683, 531, 364, 232, 144, 233, 376, 596, 895, 1214, 1429
Offset: 0
Triangle begins:
1;
2, 2;
3, 4, 3;
5, 7, 7, 5;
8, 12, 14, 12, 8;
13, 20, 26, 26, 20, 13;
21, 33, 46, 52, 46, 33, 21;
34, 54, 79, 98, 98, 79, 54, 34;
55, 88, 133, 177, 196, 177, 133, 88, 55;
...
-
f:= proc(n,k) option remember;
if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi
end proc:
for n from 0 to 10 do
seq(f(n,k),k=0..n)
od; # Robert Israel, Sep 20 2018
-
t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten
Original entry on oeis.org
0, 1, 3, 11, 41, 155, 591, 2267, 8735, 33775, 130965, 509015, 1982269, 7732659, 30208749, 118167055, 462760369, 1814091011, 7118044023, 27952660883, 109853552255, 432021606103, 1700093447847, 6694137523051, 26372544576331, 103950885100775, 409928481296331
Offset: 0
-
List([0..30], n-> Sum([0..n], k-> Binomial(2*n-k-1, n-k)*Fibonacci(k) )); # G. C. Greubel, Nov 28 2019
-
[(&+[Binomial(2*n-k-1, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 28 2019
-
with(combinat); seq( add(binomial(2*n-k-1, n-k)*fibonacci(k), k=0..n), n=0..30); # G. C. Greubel, Nov 28 2019
1/(sqrt(1 - 4*x) + 1/x - 4): series(%, x, 27):
seq(coeff(%, x, k), k=0..26); # Peter Luschny, May 29 2021
-
t[n_, k_]:= CoefficientList[ Series[x/(1-x-x^2)/(1-x)^k, {x,0,k}], x][[k+1]]; Array[ t[#, #] &, 20]
Table[Sum[Binomial[2*n-k-1, n-k]*Fibonacci[k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 28 2019 *)
-
a(n):=sum(fib(k)*binomial(2*n-k-1,n-k),k,1,n); /* Vladimir Kruchinin, Mar 17 2016 */
-
a(n) = sum(k=1, n, fibonacci(k)*binomial(2*n-k-1, n-k)) \\ Michel Marcus, Mar 17 2016
-
[sum(binomial(2*n-k-1, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 28 2019
A347584
Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Lucas number.
Original entry on oeis.org
2, 1, 1, 3, 2, 3, 4, 5, 5, 4, 7, 9, 10, 9, 7, 11, 16, 19, 19, 16, 11, 18, 27, 35, 38, 35, 27, 18, 29, 45, 62, 73, 73, 62, 45, 29, 47, 74, 107, 135, 146, 135, 107, 74, 47, 76, 121, 181, 242, 281, 281, 242, 181, 121, 76, 123, 197, 302, 423, 523, 562, 523, 423, 302, 197, 123
Offset: 0
The first two Lucas numbers (for n=0 and n=1) are 2 and 1, so the first two rows (again, for n=0 and n=1) of the triangle are 2 and 1, 1 respectively.
Triangle begins:
2;
1, 1;
3, 2, 3;
4, 5, 5, 4;
7, 9, 10, 9, 7;
11, 16, 19, 19, 16, 11;
18, 27, 35, 38, 35, 27, 18;
-
T[n_, 0] := LucasL[n]; T[n_, n_] := LucasL[n];
T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
A379837
Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+3).
Original entry on oeis.org
2, 3, 3, 5, 6, 5, 8, 11, 11, 8, 13, 19, 22, 19, 13, 21, 32, 41, 41, 32, 21, 34, 53, 73, 82, 73, 53, 34, 55, 87, 126, 155, 155, 126, 87, 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 144, 231, 355, 494, 591, 591, 494, 355, 231, 144
Offset: 0
Triangle begins:
k= 0 1 2 3 4 5 6
n=0: 2;
n=1: 3, 3;
n=2: 5, 6, 5;
n=3: 8, 11, 11, 8;
n=4: 13, 19, 22, 19, 13;
n=5: 21, 32, 41, 41, 32, 21;
n=6: 34, 53, 73, 82, 73, 53, 34;
...
-
// As triangle // t={};Do[r={};Do[If[k==0||k==n,m=Fibonacci[n+3],m=t[[n,k]]+t[[n,k+1]]];r=AppendTo[r,m],{k,0,n}];AppendTo[t,r],{n,0,11}];t
Showing 1-10 of 10 results.
Comments