cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108632 Semiprimes with prime digits (only digits 2,3,5,7 in semiprimes).

Original entry on oeis.org

22, 25, 33, 35, 55, 57, 77, 235, 237, 253, 323, 327, 335, 355, 377, 527, 533, 535, 537, 553, 573, 723, 737, 753, 755, 2227, 2253, 2257, 2323, 2327, 2335, 2353, 2533, 2537, 2573, 2577, 2722, 2723, 2733, 2735, 2757, 2773, 3223, 3227, 3233, 3235, 3273, 3277
Offset: 1

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Comments

Complement of 108631 in the class of semiprimes.

Crossrefs

Cf. A108631.

Programs

  • Mathematica
    fQ[n_]:=Plus@@Last/@FactorInteger[n]==2&&Union[{2, 3, 5, 7}, IntegerDigits[n]]=={2, 3, 5, 7};Select[Range[4000], fQ[ # ]&]
    Select[FromDigits/@Flatten[Table[Tuples[{2,3,5,7},n],{n,2,4}],1],PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 19 2012 *)

A242739 Semiprimes having only straight digits.

Original entry on oeis.org

4, 14, 74, 77, 111, 141, 177, 411, 417, 447, 471, 717, 771, 1111, 1114, 1141, 1147, 1174, 1177, 1411, 1417, 1441, 1477, 1711, 1714, 1717, 1774, 4117, 4141, 4171, 4174, 4411, 4414, 4417, 4471, 4474, 4711, 4714, 4717, 4741, 4747, 4771, 4777, 7111, 7114, 7117, 7141
Offset: 1

Views

Author

K. D. Bajpai, May 21 2014

Keywords

Comments

A straight digit semiprime has only the straight digits, i.e., 1, 4 or 7.
Intersection of A001358 and A028373. - Michel Marcus, May 25 2014

Examples

			471 = 3 * 157 is semiprime and has only straight digits 4, 7 and 1. Hence it is in the sequence.
1147 =  31 * 37 is semiprime and has only straight digits 1, 1, 4 and 7. Hence it is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    A242739 = {}; Do[a = PrimeOmega[n]; If [a == 2 && Intersection[IntegerDigits[n], {0, 2, 3, 5, 6, 8, 9}] == {}, AppendTo[A242739, n]], {n, 8000}]; A242739
    Table[Select[FromDigits/@Tuples[{1,4,7},n],PrimeOmega[#]==2&],{n,4}]//Flatten (* Harvey P. Dale, Sep 23 2022 *)
Showing 1-2 of 2 results.