cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A279394 Triangle read by rows, T(n,m) = sigma_{n-m}(m) for n >= 1, m = 1,2, ..., n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 12, 2, 1, 65, 244, 273, 126, 50, 8, 4, 1, 129, 730, 1057, 626, 252, 50, 15, 3, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 2, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12, 6
Offset: 1

Views

Author

Wolfdieter Lang, Jan 07 2017

Keywords

Comments

See A109974 (downward antidiagonals) for details and references. sigma_k(n) is the sum of the k-th power of the positive divisors of n.
This is the triangle read by rows obtained from the array sigma_k(n) for k >= 0, n >= 1, read by upward antidiagonals.
The row sums are A108639.

Examples

			The triangle T(n, m) begins:
n\m 1   2    3    4    5    6   7  8  9 10
1:  1
2:  1   2
3:  1   3    2
4:  1   5    4    3
5:  1   9   10    7    2
6:  1  17   28   21    6    4
7:  1  33   82   73   26   12   2
8:  1  65  244  273  126   50   8  4
9:  1 129  730 1057  626  252  50 15  3
10: 1 257 2188 4161 3126 1394 344 85 13  4
...
n = 11: 1 513 6562 16513 15626 8052 2402 585 91 18 2,
n = 12: 1 1025 19684 65793 78126 47450 16808 4369 757 130 12 6.
...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> numtheory:-sigma[n-k](k):
    seq(seq(T(n,k), k=1..n), n=1..12); # Peter Luschny, Jan 07 2017
  • Mathematica
    Table[DivisorSigma[k, #] &[n - k + 1], {n, 0, 11}, {k, n, 0, -1}] (* Michael De Vlieger, Jan 09 2017 *)

Formula

T(n, m) = sigma_{n-m}(m), n >= 1, m = 1..n.

A108640 a(n) = Product_{k=1..n} sigma_{n-k}(k), where sigma_m(k) = sum{j|k} j^m.

Original entry on oeis.org

1, 2, 6, 60, 1260, 239904, 123263712, 872883648000, 35330106763980000, 15502816844111220549120, 32196148399600498119169883520, 2560463149313858442381787649990400000, 717635502576022020068175045395317927056000000
Offset: 1

Views

Author

Leroy Quet, Jul 06 2005

Keywords

Examples

			a(5) = 1^4 * (1^3 +2^3) * (1^2 +3^2) * (1^1 +2^1 +4^1) * (1^0 +5^0) = 1 * 9 * 10 * 7 * 2 = 1260.
		

Crossrefs

Cf. A108639 (with sums).

Programs

  • Magma
    A108639:= func< n | (&*[DivisorSigma(j, n-j): j in [0..n-1]]) >;
    [A108639(n): n in [1..30]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory): s:=proc(n,k) local div: div:=divisors(n): sum(div[j]^k,j=1..tau(n)) end: a:=n->product(s(i,n-i),i=1..n): seq(a(n),n=1..14); # Emeric Deutsch, Jul 13 2005
  • Mathematica
    Table[Product[DivisorSigma[j,n-j], {j,0,n-1}], {n,30}] (* G. C. Greubel, Oct 18 2023 *)
  • PARI
    a(n) = prod(k=1, n, sigma(k, n-k)); \\ Michel Marcus, Aug 16 2019
    
  • SageMath
    def A108640(n): return product(sigma(n-j,j) for j in range(n))
    [A108640(n) for n in range(1,31)] # G. C. Greubel, Oct 18 2023

Extensions

More terms from Emeric Deutsch, Jul 13 2005
Showing 1-3 of 3 results.